GDB Cookbook

Jacqueline DeLorie
CS 502 Operating Systems

While working on the projects for this course students may encounter crashes within their Virtual
Machine. This document will show you how to use GDB on the Virtual Machine provided by Professor
Lauer. GDB is the GNU debugging tool, which allows the user to view the state of the program at various
points allowing the user to assess and repair the given program. After reading this, the user will be able to use
GDB to debug both user and kernel space programs.

Using GDB

The Virtual Machine that Professor Lauer supplied comes with GDB pre-installed. Therefore students should
take advantage of it in order to debug their projects.

There are two different ways to debug programs using GDB:
e One way is to use GDB while a program is running so that the user can see what is going on within
the program itself.
e Another way to use GDB is to run it after the program has crashed, which can give you information
about the state of the program at the time of the crash. This document will focus on using GDB on
a running program, though most of the commands are the same for both.

Previous versions of the kernel did not have built in support for GDB. Different patches would be required
depending on the version. Luckily for us, the version of Open Suse that Professor Lauer has provided does
not require any of these patches.

GDB Setup

User Space Programs

The GDB setup for user space programs is simple; one terminal is used to run the program and another is
used to run GDB. The only extra step is during compilation, the user must compile the program with the --g
argument specified. The --g flag tells the compiler to store debugging information in the generated object file.

Kernel Debugging

Setting up GDB for kernel debugging is more involved. Two Virtual Machines must be used, one to run the
kernel and another to run GDB. From here on the Virtual Machine that will run GDB will be referred to as
Machine A and the Virtual Machine running the kernel will be referred to as Machine B.

The first step to kernel debugging with GDB is to enable KGDB inside the kernel you will be testing. KGDB
flags the kernel to allow for debugging by GDB.

Start with the normal building process:
1. cd kernelSrc
2. make O=~/kernel-dest xconfig
3. Load the config Professor Lauer provided.
4. Once in the kernel configuration menu, change the name of the kernel.

a. Click “General setup”.
b. To the right double click and edit “Local version”.
5. KGDB must now be enabled.
a. Choose “Kernel Hacking” from the main menu.
b. Check “KGDB:kernel debugger”. To the right you will see that “KGDB: use kgdb over
the serial console” has been automatically checked.
c. Save the configuration. See Figure 1 below for an example.
6. make —j4 O=~/kernel-dest > ~/make-out.txt 2> ~/make-errors.txt
cd ~/kernel-dest
8. sudo make modules_install install

~

Note: As in user space programs the compiler must be told to generate debug information for GDB to use.
This configuration option is CONFIG_DEBUG_INFO. We do not need to enable this as Professor Lauer’s
configuration already has done so.

Linux/i386 2.6.37 6 Kernel Configuration
File Edit Option Help

ol I E

QOption Qption

—MEDAC (Error DetectionAnd Corre =2

' OReal Time Clock [MIKGDE: use kgdb over the serial console

- CIDMAEngine support OKGDE: internal test suite

OKGDE: Allow debugaing with traps in notifiers
OKGDB_KDE: include kdb frontend for kadb

—DOAuxiliary Display support
—0OUserspace IO drivers
Staging drivers
[AX86 Plafform Specific Device Dri
irmware Drivers
ile systems
—Caches
—CD-ROM/DVD Filesystems
—DOS/FATINT Filesystems
—Pseudo filesystems
—[AMiscellaneous filesystems
—MMNetwork File Systems
—Partition Types
—Mative language support
~—[s] Distributed Lock Manager (DLM)
~Kemel hacking COMFIG KGDB
OTracers -
OSample kernel code Ifyou say Y here, itwill be possible to remotely debug the
E<GDE: kernel debugger kernel using gdb. Itis recommended but not required, that
—Security options you also turn on the kernel cunflg_ u_p(mn
—Cryptographic API COMFIG_FRAME_POINTER to aid in producing more reliable stack
L backiraces mthe_exlerr]a\ debugger. Documentation of
EAHardware crypto devices kernel debugger is available at hitp:/kgdb sourceforge.net
—EVirtualization as well as in DocBook form in Documentation/DocBookd. If
“Library routines unsure, say I

KGDB: kernel debugger (KGDB)

Figure 1

A second Virtual Machine will be needed after this point. Therefore, follow the instructions provided by
Professor Lauer to create Machine B. Here is a link to the .pdf- SettingUpYourVirtualMachine VMware.pdf

Machine A setup

Now that you have both Machine A and B you will need to copy the kernel from Machine A to Machine B.
The kernel files necessary to run the test to be debugged on Machine B must be obtained from Machine A.

Gather the files necessary for Machine B that are located on Machine A:
1. In your home directory make a subdirectory called “image”.
2. Copy the following files from /grub/ to ~/image/:
o System.map-2.6.37.6-*kernel name*
o initrd-2.6.37.6-*kernel name*
o vmlinuz-2.6.37.6-*kernel name*
3. Compress the folder from your home directory by typing “tar-cf image.tar image”.

http://web.cs.wpi.edu/~cs502/cisco11/Protected/ProjectAssignments_Cisco/SettingUpYourVirtualMachine_VMware.pdf

4. Send image.tar to Machine B

Note: You could use the Shared Folder to do this or you could e-mail it to yourself. Remember that when
you are not booted into the kernel supplied by Professor Lauer that the Shared Folder will not work.

Machine A and B must have the ability to communicate in a bidirectional fashion. Therefore, a serial
connection is required between the two Virtual Machines. A socket must be opened up on each end of the
connection. In order to create a serial connection, the Virtual Machine Settings must be edited.

To accomplish this:

1. Turn the Virtual Machine off.

2. Click “Edit virtual machine settings”, then the “Add...” button; this will start the “Add Hardware
Wizard”.

3. Choose the “Serial Port” option, as seen in Figure 2.

Virta] Mt S g ——————— 3 N
Hardware | Options
Devics Summary Device status
- femory 268 Connected
O Processors | Add Hardware Wizard [=
2\ Hard Disk (50}
*) CDJDVD (IDE) Hardware Type
TEInstwork Adad what bype of hardware do you want b install?
USB Controlle r
@) sound Card Hardwars Explanation I
Breriter 2 Hard Disk. tad a seial port,
Serial Port 2 Browse. .
©JCDJDYD Drive
Bpisplay =

Floppy Drive
T Nstwork Adapter
&) Usk Contraller

@) Sound Card j
B raraliel Port

(8 seridl Port =
=hPrinter

& Generic 551 Device

s this serial
Errupt mode}

T

ok [camel | [Hel]m

Figure 2

4. Click the “Next” button, then “Output to Named Pipe”. Verify that the input information looks like
Figure 3.

- — 5
Add Hardware Wizard =5

specify Socket
Which socket should this serial port conneck to?

Mamed pipe

i\ \pipetcom_1

[Thls end is the dlient, v]

IThe ather end is a virtual maching, ']

Device status

Zonnect at power on

[< Back][Finish J[Cancel

Figure 3

Machine B Setup

The image.tar file from Machine A must be un-tarred and put into the correct location:

1. Use “tar —xf image.tar”.
2. Copy all of the contents from image to /boot.
3. Add the kernel entry to the grub list:
a. In /boot/grub “sudo vim menu.lst”.
b. Add another entry for the kernel image you copied, use Figure 4 as an example.

Note: Two more boot arguments are required in order for Machine B to be controlled by GDB on boot. Add
to the entry you just created “kgdb=ttyS1,115200 kgdbwait”, see Figure 4 below. The argument
“kgdb=ttyS1,115200” tells the kernel which socket it will be using to communicate with GDB and at what
speed. “kgdbwait” tells the kernel to wait for a GDB connection.

Note: During boot “kgdbwait” will make the kernel hang until Machine B has executed the “continue”
command.

Note: The number in “ttyS*number*” depends on how many serial ports are already in use. Within the given
Virtual Machine image ttySO is in use by default. ttyS1 will work for this Virtual Machine, but if you have
previously added any other serial connections you may need to increase this number.

=v/sda2 resume=/dev/sdal splash=silent quiet sh

Figure 4

As in Machine A, a socket must be opened, as previously described above in Section “Machine A Setup”. The
one difference is in Step 4. When creating the socket, the side located on Machine B will be the server end.
See this difference reflected in Figure 5.

7 — >
Add Hardware Wizard &J

Specify Socket
‘Which socket should this serial port connect to?

Mamed pipe

\.\pipetcom_1]

[This end is the server. v]

[The other end is a virtual machine. v]

Device status

[¥] Connect at power on

[< Back][Finish][Cancel }

Figure 5

Note: In the client/server relationship within the socket, Machine B acts as the server pushing status
information out to the client, Machine A.

At this point both Virtual Machines should be off. Machine B must be started first because it has been
configured to have the server end of the connection. When Machine B is started, it will open the socket in
order for Machine A to establish a connection. Now GDB can be launched on machine A and control it the
same as it would for a user space program.

Using GDB during Program Execution
Starting GDB and Running Program through GDB

Here are different ways to invoke GDB to debug a running program:
1. gdb — This will start gdb up, but will not set up or start a program.
2. gdb *program name* - This will start gdb up and set the executable to you program’s name.
3. gdb --args *program name* *arguments*- Will start gdb, set the executable to the given program
name along with setting the arguments that will be passed into your program.

User Space Specific

@ Project1 : gdb @ e &
File Edit View Bookmarks Seftings Help
student@linux-zudt:~/TernProject/Projectl> gdb --args doit 1s -1

GNU gdb (GDB) SUSE (7.2-3.3)

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLw3+: GMU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "1586-suse-linux".

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>. ..

Reading symbols from /home/student/TermProject/Projectl/deit...done.

(gdb)

Projectl : gdh

To ditent input to this virtual machine, press Cir+G ERLCET SR vnware

Figure 6

Once any of the above commands are executed the output shown in Figure 6 will be displayed. In
order to run the specified program use the “run” command. If you forget to specify the program to be
executed or wish to change it, the “file” command can be used. The use of this command is just “file
program name”. Also, if you forgot to specify the command line arguments you can use the “run”
command to do so. This can also include the redirection of program output, which otherwise will display on-
screen as normal. The format of the run command will then turn into “run *command line arguments*”.

Kernel Specific

Machine B is already running the kernel that you will be debugging and is currently in the waiting
state. There will be no need to tell the program to “run”, but you do need to give GDB symbol information
about the kernel. The symbol information allows you to gather accurate information along with control of the
kernel. GDB will also need to be told what socket to listen to. The steps are below along with Figure 7 for
directions.

Steps to start GDB on Machine A:
1. cod ~/kernel-dest
2. sudo gdb vmlinux (this load takes ~1 minute)
3. set remotebaud 115200
4. target remote /dev/ttyS1

o kernel-dest : gdb ¥ &) &
File Edit View Bookmarks Settings Help

student@linux-zudt:~/TernProject/Project3> cd ~/kernel-dest
student@linux-zudt:~/kernel-dest> 1s

) >

arch drivers include kernel mm Module.symvers security System.map vmlinux.o
block firmware init 1lib modules.builtin net sound usr
crypto fs ipc Makefile modules.order scripts source wmlinux

student@linux-zudt:~/kernel-dest> sudo gdb vmlinux

root's password:

GNU gdb (GDB) SUSE (7.2-3.3)

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details

This GDB was configured as "i586-suse-linux".

For bug reperting instructions, please ses:

<http://www. gnu.org/software/gdbs/bugs/=. ..

Reading symbols from /home/studentskernel-dest/umlinux. .. done

(gdb) set remotebaud 115200

(gdb) target remote /dev/ttySl

Remote debugging using /dev/ttysSl

kgdb_breakpoint () at /home/student/kernel-src/kernel/debug/debug_core.c:960

960 wnb (): /% Sync peint after breakpoint */
(geb) I
~
v
Projectl : bash H arub - bash H kernel-dest: gdb
Figure 7

Multithreaded Programs:

GDB works with multithreaded programs, though only one thread is at the forefront at a time. The
thread at the forefront is considered the “current” thread. Some commands can be executed on a specific
thread or set of threads, but when a command is executed without a thread specified then the “current” is
affected. To execute a command on all threads you can use “thread apply all *command*”. Information is
displayed whenever a thread is created or exited. To invoke the display of all threads use “info threads” or to
switch the “current” thread use “thread *number*”.

To view the current threads running on Machine A type “info threads” and you will see a list like the
one shown in Figure 8.

Note: that Thread 1 is the “current” thread, which is distinguished by the “*”” next to the number.

g kernel-dest : g CINENEE
File Edit View Bookmarks Setings Help
23 Thread 21 (kworker/1:1) ©xc03c1181 in context_switch () at /home/student/kernel-src/kernel/sched. c: 3081
22 Thread 20 (kacpi_hotplug) Gxc03c1181 in context_switch ()
at /home/student/kernel-src/kernel/sched.c: 3091
21 Thread 19 (kacpi_notify) ©xc03c118l in context_switch ()
at /home/student/kernel-src/kernel/sched.c: 3091
20 Thread 18 (kacpid) 0xc03c1181 in context switch () at /home/student/kernel-src/kernel/sched. c:3091
19 Thread 17 (kblockd) ©xc03c1181 in context_switch () at /home/student/kernel-src/kernel/sched.c:3091
18 Thread 16 (kintegrityd) ©xc03c1181 in context_switch () at /home/student/kernel-src/kernel/sched. c: 3081
17 Thread 15 (bdi-default) ®Oxc03c1181 in context_switch () at /home/student/kernel-src/kernel/sched.c:3001
16 Thread 14 (sync_supers) 0xc03c118l in context_switch () at /home/student/kernel-src/kernel/sched, c:3091
15 Thread 13 (netns) Oxc03cl1Bl in context _switch () at shome/student/kernel-src/kernel/sched,c:3091
14 Thread 12 (khelper) 0xc03cll18l in context switch () at shomesstudentskernel-src/kernel/sched. c:3091
13 Thread 11 (cpuset) Oxc03c1181 in context switch () at /home/student/kernel-src/kernel/sched. c:3091
12 Thread 10 (kworker/0:1) 0xc03c1181 in context switch () at /home/student/kernel-srcskernel/sched. c:3091
11 Thread 9 (ksoftirgd/1) 0xc03c1181 in context_switch () at shome/student/kernel-src/kernel/sched.c:3091
10 Thread 8 (kworker/1:0) OxcB3cl18l in context_switch () at /home/student/kernel-src/kernel/sched. c: 3081
---Type <return= to continue, or q <return> to quit---
9 Thread 7 (migration/1) 0xc@3cll8l in context switch () at /home/student/kernel-src/kernel/sched.c:3091
8 Thread 6 (migration/0) 0xc03cll8l in context switch () at /home/student/kernel-src/kernel/sched.c:3091
7 Thread 5 (kworker/u:0) 0xc03c1181 in context switch () at shome/student/kernel-src/kernel/sched.c:3091
6 Thread 4 (kworker/0:0) 0xc03c1181 in context switch () at /home/student/kernel-src/kernal/sched.c:3091
S Thread 3 (ksoftirqd/0) Oxc©3c1181 in context_switch () at shome/student/kernel-src/kernel/sched.c:3091
4 Thread 2 (kthreadd) 0xc03c1181 in context_switch () at shome/student/kernel-src/kernel/sched. c:3091
3 Thread -3 (shadowCPUL) 0xc@LO7f75 in native_safe_halt ()
at /home/student/kernel-src/arch/x86/include/asn/irqflags. h: 49
2 Thread -2 (shadowCPUO) kgdb_breakpoint () at sheme/student/kernel-src/kernel/debug/debug core,c:960
* 1 Thiead 1 (swapper) kagdb_breakpoint () at /home/student/kernel-src/kernel/debug/debug core.c:960
(gdb)

Projectl : bash grub : bash kemel-dest: gdb

) >

<0

Figure 8

Breakpoints

Breakpoints are used to stop your program whenever a specific place in the code is hit. Breakpoints
can be used to gather information about the state of the program at that point during execution. These can be
particularly helpful for debugging crashes, if the user knows where in the code the program is crashing. Then
the user can both stop the program (or Virtual Machine) from crashing and obtain information about the
cause of the crash.

Breakpoint command:
break *location* thread *thread number* if *condition*

All arguments of the command are optional. If no arguments are specified the current line of execution will
be used as a breakpoint.
The location can be:

1. Line number —break example.c:123

2. Function — break example.c:my_example_function

3. Address — break Oxffffffff

Thread number can be any of the thread id’s listed by “info threads”. If the “if condition” is not supplied
then the breakpoint will always be enforced, otherwise you may supply a conditional statement in C. See

Figure 9 below for an example of a breakpoint using the conditional statement to stop breaking after the

fourth hit.
{gdb) set $foo = 3
(gdb) break execvp if $foo-- == 0
Figure 9

In Machine A you will want to set a breakpoint before entering “continue”, otherwise you will never
be able to gain control of the kernel again. When debugging a problem within a custom kernel the output
from /bin/dmesg, generated by an “Oops”, can be helpful. By looking at these logs one can determine the
point of the crash and set a break point before this line in the code.

Gathering Data

Once a breakpoint has been hit, information about the current state of the program can be gathered.
The first step in this would be to print out the current stack, which ate called “frames”. To print the stack
type “bt”, also known as back trace. The local variables within the frames can be printed as well by adding
“full”, so “bt full”. An example of “bt” output is show below in Figure 10. The stack trace can be helpful

when determining the code path followed when executed. You can change the “current” frame with “frame
number”, where number is one of the numbers listed by “bt”.

(gdb) bt
20 kgdb_breakpoint () at /home/student/kernel-src/kernel/debug/debug_core.c:960
#1 0xc0l6dc98 in kgdb_register_io_module (new_dbg_ioc_ops=0xc06470c8)
at /home/student/kernel-src/kernel/debug/debug_core.c:900
#2 0xc0323834 in configure_kgdboc () at /home/student/kernel-src/drivers/serial/kgdboc.c:196
#3 0xc0l01225 in do_one_initcall (fn=0xc0678d19 <init_kgdboc=) at shome/student/kernel-src/init/main.c:750
#4 0xc06528d9 in do_initcalls (unused=<value optimized out=) at /home/student/kernel-src/init/main.c:780
#5 do_basic_setup (unused=<value optimized out>) at /home/student/kernel-src/init/main.c:801
#6 kernel_init (unused=<value optimized out=) at shome/student/kernel-src/init/main.c:892
#7 0OxcOl02e26 in ?7 () at /home/student/kernel-src/arch/x86/kernel/entry_32.5:1044
#8 0x00000000 in 2?7 () ~

Figure 10

If you would like to see the code surrounding a certain line, then you can “list *filename:line
number*”. “List” alone will print the code surrounding the current instruction pointer within that frame. See
Figure 11 below, which uses “list” to show a range in a file from the back trace in Figure 10. “List” is helpful
while examining the back trace. Viewing the code is useful when traceing back where an argument was passed
from or where a variable was modified.

(gdb) 1ist debug_core.c:960, 980

960 wnb (); /* Sync point after breakpoint */

961 atomic_dec(&kgdb_setting_breakpoint);

962 }

963 EXPORT_SYMBOL_GPL (kgdb_breakpoint);

964

965 static int __init opt_kgdb_wait{char *str)

966 {

967 kgdb_break_asap = 1:

968

969 kdb_init (KDB_INIT_EARLY);

970 if (kgdb_io_module_registered)

971 kgdb_initial_breakpoint();:

972

973 return 0;

974 }

975 [

976 early_param("kgdbwait", opt_kgdb_wait); ~

(gdb) v
Figure 11

While inside a frame, more information about the current state of variables, registers, etc can be
found. To show the current registers, “info registers” can be used. One register to note is “eip”, this is the
current instruction pointer. It is also the point in the code where “list” will display around if no other location
is passed in. “info args” can be used to show the values of the arguments passed into the function. “info
locals” will display the values of all of the local variables. Figure 12, below, shows an example for all three of
the previous commands. Showing the values of these variables allows the user to see if any unexpected values
are occurring. Unexpected variable values could change the code path or cause crashes. Variables such as
function pointers could drastically change the code path if accidentally altered. GDB allows the user to view
the function pointer address and then view the function pointed to by that address. This is done by
dereferencing the pointer, which is described below.

(gdb) info args

No arguments.

(gdb) info locals

p = Oxféc73eco

tty_line = 1

err = -19

cptr = <value optimized out=

cons = Ox0

(gdb) info registers

eax Ox36 54

ecx 0x46 70

edx Ox46 70

ebx 0x0 0

esp Oxf409bfac 0xf409bf8c
ebp Oxc0678d19 0xc0678d19
esl OxfEc73eco -154714432
edl 0x80 128

eip 0xc0323834 0xc0323834 <configure kgdboc+241=>
eflags 0x202 [IF 1

cs Ox60 96

Ss Ox68 104

ds OxfEc7007h -154730373
es 0x7b 123

fs oxffff 65535

gs oxffff 65535

[CEIIN |

Figure 12

<>

In the above example, seen in Figure 12, you can see that info locals printed an address as the value for p. P is

actually a pointer therefore, the pointer’s memory address is being displayed rather than the value of the

structure. The values within the structure can be seen by dereferencing the pointer; the same as is done in C,

see Figure 13 below for an example. If the value of the pointer is 0x0, then it is null. If the value within the
structure is referenced while the pointer is still null, then a null pointer error will occur, also known as a

segmentation fault. Knowing the value of a variable can also be helpful when an assert statement is failed and

an error is thrown for that reason.

(gdb) print p
$4 = (struct tty driver *) Oxf6c73zchd
{gdb) print *p
$5 = {
magic = 21506,
kref = {
refcount = {
counter = 2
}
o
cdev = {
kobj = {
name = Qx0,
entry = {
next
prev
parent = 0x0,
kset = Ox0,
ktype = OxcB6397e0,
sd = 0x0,
kref = {
refcount = {
counter =1

OxfEc73ece,
OxfBci3ece

}
}.
state_initialized = 1,
state_in_sysfs = 0,

Figure 13

| >

<>

Summary

GDB is an extremely useful tool for both user and kernel space programs. You should now be able
to set up and start GDB on both user and kernel space programs. Once GDB has started you should be able
to set breakpoints and navigate your way around the call stack of various threads when these breakpoints are
hit. GDB has much more functionality than would ever be able to fit into this cookbook, but you should now
be able to successtully find and address segmentation fault issues. Attached is a “cheat sheet” of the above

commands for quick reference.

10

Cheat Sheet

gdb — This will start gdb up, but will not set up or start a program.

gdb *your program name* - This will start gdb up and set the executable to you program’s name.

gdb --args *your program name* *arguments*- Will start gdb, set the executable to your programs name.
along with setting the arguments that will be passed into your program.

file *program* - set the executable/file.

run — run the set executable with the currently set arguments.

run *arugments* - run the set executable with the given arguments

info threads — lists the currently running threads (* next to the current thread)

thread apply all *command* - apply command to all threads

thread *number* - switch thread to given thread number

break *location* thread *thread number* if *condition* - set a break point at the given location, thread
number, only when the given condition is true(by default the if is always true)

bt — dump the current call stack

frame *number* — change to given frame number

list — lists code lines around the current instruction pointer

list *filename:line number* -list code lines around the given line

info registers — dump registers

info args — display arguments passed to the function

info locals — display the local variables

print *pointer — print the structure pointed to by pointer

11

Bibliography

"Debugging with GDB." Sourceware.org: Free Software! Get Your Fresh Hot Free Software! Web. 09 Jan.
2012. <http://sourceware.org/gdb/current/onlinedocs/gdb/index.html>.

Web. 09 Jan. 2012. <http://speed.cis.nctu.edu.tw/~ydlin/course/cn/mcn10fg/KGDB_HOWTO.pdf>.

12

