
9.1: Intel Memory 1

Jerry Breecher

OPERATING SYSTEMS

Intel’s View of Memory
Management

9.1: Intel Memory 2

Intel Memory Management
This set of slides is designed to explain the Memory Management Architecture used by

Intel Pentium processors.
For these slides we will use the Intel document found at:

http://www.intel.com/design/processor/manuals/253668.pdf

Intel explains this document as a description of the hardware interface required by
an Operating System in order to implement a Memory Management.

It’s assumed that you are familiar with the normal picture of
memory management as presented in Chapters 8 & 9 in this
course.

9.1: Intel Memory 3

How Do Operating Systems Use
Memory Management

So I wrote a little program to probe the memory seen by a program. I ran that same program
on Windows 2000, Windows XP and RedHat LINUX. I was looking at the addresses that
were being used for various kinds of data/code in the program. I probed the addresses by
asking for memory continually until something broke. For instance, did continual allocs
until an error was returned. Here’s a pseudo code of the program:

#define ONE_MEG 1048576
#define MEM_SIZE 3 * ONE_MEG
char GlobalMemory[MEM_SIZE]; // This is a global/static variable

int main(int argc, char *argv[])
{

int FirstStackLocation;
int Mode, Temp, *TempPtr;
int Counter = 0;
void *MemPtr, *LastPtr;

printf("Address of main(): %8X\n", (int)(&main));
while (TRUE) // Find highest memory until seg. fault
{

TempPtr = (int *)((int)main + (CODE_JUMP * Counter)); // Address of location
Temp = *TempPtr;
printf("Got address %X\n", (int)((int)main + (CODE_JUMP * Counter)));
Counter++;

}
Keeps touching memory until it takes a fault

9.1: Intel Memory 4

How Do Operating Systems Use
Memory Management

printf("Address Start of Global: %8X\n", (int)(&GlobalMemory));
printf("Address End of Global: %8X\n", (int)(&GlobalMemory) + MEM_SIZE -1);
MemPtr = malloc(ONE_MEG);
printf("First location on heap: %8X\n", (int)MemPtr);
while((MemPtr = malloc(ONE_MEG)) != NULL)
{

LastPtr = MemPtr;
Counter++;
if (Counter %100 == 0)

printf("%5d alloc on heap:%8X\n", Counter, (int)LastPtr +ONE_MEG - 1);
}
printf("Total bytes allocated: %8X (Hex)\n", Counter * ONE_MEG);
printf("Last location on heap: %8X\n", (int)LastPtr);

}

#define STACK_ALLOC ONE_MEG
void RecursiveRoutine()
{

char Temp[STACK_ALLOC];

printf("Begin/End of this allocation: %8X %8X\n",
(int)&(Temp), (int)(&(Temp[STACK_ALLOC])));

RecursiveRoutine();
}

Iterates on allocs

Iterates using lots of stack

9.1: Intel Memory 5

How Do Operating Systems Use
Memory Management

So I wrote a little program to probe the memory seen by a program. I ran that same program
on Windows 2000, Windows XP and RedHat LINUX. I was looking at the addresses that
were being used for various kinds of data/code in the program. I probed the addresses by
asking for memory continually until something broke. For instance, did continual allocs
until error was returned

1C0000x
~ 2 megabyte

16EF00x22EF00xStack

39800000x
~ 950 megabytes

3A261000x760000xHeap

300000x
~ 3 megabytes

703000x403000xStatic (Global)
Data

002000x
~ 8 Kbytes

403000x401000xCode

SizeLast AddressFirst AddressSegment

Windows XP Memory Usage

Note these
addresses grow

down!

The file
MemoryDemo.exe
is about 170Kbytes
in size.

Declared a 3 Meg
static array!.

Note: 100000x == 1 Megabyte

9.1: Intel Memory 6

How Do Operating Systems Use
Memory Management

So I wrote a little program to probe the memory seen by a program. I ran that same program
on Windows 2000, Windows XP and RedHat LINUX. I was looking at the addresses that
were being used for various kinds of data/code in the program. I probed the addresses by
asking for memory continually until something broke. For instance, did continual allocs
until error was returned

9640,0000x
~ 2.5 gigabyte

29BA,91E0xBFFB,7334xStack

B6000000x
~ 3 gigabytes

01CE,4000xB7EE,B000xHeap

300000x
~ 3 megabytes

8349A008049A00xStatic (Global)
Data

001500x
~ 6 Kbytes

8049900x8048400xCode

SizeLast AddressFirst AddressSegment

LINUX Memory Usage

Note these
addresses grow

down!

Declared a 3 Meg
static array!.

How can this sum to
more than 4 gigs??

Note: 100000x == 1 Megabyte

9.1: Intel Memory 7

How Do Operating Systems Use
Memory Management

0x08048368 <main+0>: 55 push %ebp

0x08048369 <main+1>: 89 e5 mov %esp,%ebp

0x0804836b <main+3>: 83 ec 08 sub $0x8,%esp

0x0804836e <main+6>: 83 e4 f0 and $0xfffffff0,%esp

0x08048371 <main+9>: b8 00 00 00 00 mov $0x0,%eax

0x08048376 <main+14>: 83 c0 0f add $0xf,%eax

0x08048379 <main+17>: 83 c0 0f add $0xf,%eax

0x0804837c <main+20>: c1 e8 04 shr $0x4,%eax

0x0804837f <main+23>: c1 e0 04 shl $0x4,%eax

0x08048382 <main+26>: 29 c4 sub %eax,%esp

0x08048384 <main+28>: 83 ec 0c sub $0xc,%esp

0x08048387 <main+31>: 68 c0 84 04 08 push $0x80484c0

0x0804838c <main+36>: e8 1f ff ff ff call 0x80482b0

0x08048391 <main+41>: 83 c4 10 add $0x10,%esp

0x08048394 <main+44>: e8 02 00 00 00 call 0x804839b

0x08048399 <main+49>: c9 leave

0x0804839a <main+50>: c3 ret
1 void b();
2 void c();
3 int main()
4 {
5 printf("Hello from main\n");
6 b();
7 }
8 // This routine reads the opcodes from memory and prints them out.
9 void b()
10 {
11 char *moving;
12
13 for (moving = (char *)(&main); moving < (char *)(&c); moving++)
14 printf("Addr = 0x%x, Value = %2x\n", (int)(moving), 255 & (int)*moving);
15 }
16 void c()
17 {
18 }

9.1: Intel Memory 8

Memory Layout
0x0804839b <b+0>: 55 push %ebp

0x0804839c <b+1>: 89 e5 mov %esp,%ebp

0x0804839e <b+3>: 83 ec 08 sub $0x8,%esp

0x080483a1 <b+6>: c7 45 fc 68 83 04 08 movl $0x8048368,0xfffffffc(%ebp)

0x080483a8 <b+13>: 81 7d fc d9 83 04 08 cmpl $0x80483d9,0xfffffffc(%ebp)

0x080483af <b+20>: 73 26 jae 0x80483d7 <b+60>

0x080483b1 <b+22>: 83 ec 04 sub $0x4,%esp

0x080483b4 <b+25>: 8b 45 fc mov 0xfffffffc(%ebp),%eax

0x080483b7 <b+28>: 0f be 00 movsbl (%eax),%eax

0x080483ba <b+31>: 25 ff 00 00 00 and $0xff,%eax

0x080483bf <b+36>: 50 push %eax

0x080483c0 <b+37>: ff 75 fc pushl 0xfffffffc(%ebp)

0x080483c3 <b+40>: 68 d1 84 04 08 push $0x80484d1

0x080483c8 <b+45>: e8 e3 fe ff ff call 0x80482b0

0x080483cd <b+50>: 83 c4 10 add $0x10,%esp

0x080483d0 <b+53>: 8d 45 fc lea 0xfffffffc(%ebp),%eax

0x080483d3 <b+56>: ff 00 incl (%eax)

0x080483d5 <b+58>: eb d1 jmp 0x80483a8 <b+13>

0x080483d7 <b+60>: c9 leave

0x080483d8 <b+61>: c3 ret 1 void b();
2 void c();
3 int main()
4 {
5 printf("Hello from main\n");
6 b();
7 }
8 // This routine reads the opcodes from memory and prints them out.
9 void b()
10 {
11 char *moving;
12
13 for (moving = (char *)(&main); moving < (char *)(&c); moving++)
14 printf("Addr = 0x%x, Value = %2x\n", (int)(moving), 255 & (int)*moving);
15 }
16 void c()
17 {
18 }

9.1: Intel Memory 9

Intel Memory Management

This is an overview of the hardware pieces provided by Intel.
It’s what we have to work with if we’re designing an O.S.

9.1: Intel Memory 10

Intel Memory Management
The memory management facilities of the IA-32 architecture are divided into two

parts:

Segmentation
Segmentation provides a mechanism of isolating individual code, data, and stack

modules so that multiple programs (or tasks) can run on the same processor
without interfering with one another.

When operating in protected mode, some form of segmentation must be used.

Paging.
Paging provides a mechanism for implementing a conventional demand-paged,

virtual-memory system where sections of a program’s execution environment
are mapped into physical memory as needed. Paging can also be used to
provide isolation between multiple tasks.

These two mechanisms (segmentation and paging) can be configured to support
simple single program (or single-task) systems, multitasking systems, or
multiple-processor systems that used shared memory.

9.1: Intel Memory 11

Intel Memory Management
See Figure 3-1.
Segmentation gives a mechanism for

dividing the processor’s
addressable memory space (called
the linear address space) into
smaller protected address spaces
called segments.

Segments are used to hold code, data,
and stack for a program andr to
hold system data structures (such
as a TSS or LDT).

Each program running on a processor,
is assigned its own set of
segments.

The processor enforces the boundaries
between segments and insures
that one program doesn’t interfere
with the execution of another .

The segmentation mechanism allows
typing of segments to restrict
operations that can be performed.

9.1: Intel Memory 12

Intel Memory Management
See Figure 3-1.
All the segments in a system are

contained in the processor’s linear
address space.

To locate a byte in a particular
segment, a logical address (also
called a far pointer) must be
provided.

A logical address has :
1. The segment selector – a unique

identifier for a segment - provides
an offset into a descriptor table
(such as the global descriptor
table, GDT) to a data structure
called a segment descriptor.
This segment descriptor
specifies the size of the segment,
the access rights and privilege
level for the segment, the segment
type, and the location of the first
byte of the segment in the linear
address space (called the base
address of the segment).
See 3.4.2 Segment Selectors”
for more details.

2. The offset part of the logical address -added to the
base address for the segment to locate a byte
within the segment. The base address plus the
offset thus forms a linear address in the
processor’s linear address space.

9.1: Intel Memory 13

Intel Memory Management
3.2.1 Basic Flat Model
The simplest memory model for a system is the

basic “flat model,”
the operating system and application programs

have access to a continuous, unsegmented
address space.

.
To implement a basic flat memory model with

the IA-32 architecture, at least two segment
descriptors must be created:

• one for referencing a code segment and
• one for referencing a data segment (see

Figure 3-2).
• both segments, however, are mapped to

the entire linear address space: that is, both
segment descriptors have the same base
address value of 0 and the same segment
limit of 4 GBytes.

9.1: Intel Memory 14

Intel Memory Management
3.2.2 Protected Flat Model
The protected flat model is similar to the basic

flat model, except the segment limits are set
to include only the range of addresses for
which physical memory actually exists (see
Figure 3-3).

A protection exception is generated on any
attempt to access nonexistent memory.
This model provides a minimum level of
hardware protection against some kinds of
program bugs.

More complexity can be added to this protected
flat model to provide more protection.

Example: For the paging mechanism to provide
isolation between user and supervisor code
and data, four segments need to be
defined:

– code and data segments at privilege level 3
for the user,

– and code and data segments at privilege
level 0 for the supervisor.

9.1: Intel Memory 15

Intel Memory Management
3.2.3 Multi-Segment Model
A multi-segment model (shown here) uses the full capabilities of segmentation to provide

hardware enforced protection of code, data structures, and programs and tasks.
• each program (or task) has its own table of segment descriptors and its own segments.
• segments can be completely private to their programs or shared among programs.
• Access to segments and to program environments is controlled by hardware.

Access checks can be used to protect not only
against referencing an address outside the
limit of a segment, but also against
performing disallowed operations in certain
segments.

• The access rights information created for
segments can also be used to set up
protection rings or levels.

• Protection levels can be used to protect
operating system procedures from
unauthorized access by application
programs.

9.1: Intel Memory 16

Intel Memory Management
3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space of 4

Gbytes (232 bytes).
This is the address space that the processor can address on its address bus. This address

space is flat (unsegmented), with addresses ranging continuously from 0 to FFFF,FFFFH.
This physical address space can be mapped to read-write memory, read-only memory,
and memory mapped I/O. The memory mapping facilities described in this chapter can be
used to divide this physical memory up into segments and/or pages.

The IA-32 architecture also supports an extension of the physical address space to 236 bytes
(64 GBytes); with a maximum physical address of F,FFFF,FFFFH. This extension is
invoked

• Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.
-- Talked about later.

9.1: Intel Memory 17

Intel Memory Management
3.4 LOGICAL AND LINEAR ADDRESSES
The processor uses two stages of address translation to arrive at a physical

address: logical-address (via segments) translation and linear address space
(via paging) translation.

9.1: Intel Memory 18

Intel Memory Management
3.4 LOGICAL AND LINEAR ADDRESSES
Every byte in the processor’s address space is accessed with a logical address. A logical

address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5).
.A linear address is a 32-bit address in the processor’s linear address space. The linear

address space is a flat (unsegmented), 232-byte address space, with addresses ranging
from 0 to FFFF,FFFFH.

The linear address space contains all the segments and system tables defined for a system.
To translate a logical address into a linear address, the processor does the following:
1. Uses the offset in the segment selector to find the descriptor for the segment in the GDT or

LDT and reads it into the processor, or uses the appropriate segment register.
2. Examines the segment descriptor to check the access rights and range of the segment –

makes sure the segment is accessible and has legal offset.
3. Adds the base address of the segment to the offset to form a linear address.

9.1: Intel Memory 19

Intel Memory Management
3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not

point directly to the segment, but instead points to the segment descriptor that
defines the segment. A segment selector contains the following items:

Index — Selects one of 8192 descriptors in the GDT or LDT.
TI (table indicator) flag — Specifies the descriptor table to use: GDT or LDT
Requested Privilege Level (RPL) — Specifies the privilege level of the selector.

The privilege level can range from 0 to 3, with 0 being the most privileged level.

9.1: Intel Memory 20

Intel Memory Management
3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for

holding up to 6 segment selectors (see Figure 3-7).
Each of these segment registers support a specific kind of memory reference (code, stack, or

data).
At least the code-segment, data-segment, and stack-segment registers must be loaded for a

program to run..
The processor provides three additional data-segment registers (ES, FS, and GS), which can be

used to make other data segments available to the currently executing program (or task).

To access a segment, a program must
get to it via a segment register.

Although a system can define thousands
of segments, only 6 can be available for
immediate use.

There are instructions available so the
OS can set up segment registers.

Note how the address translation actually
goes through the segment register rather
than through the Descriptor Table.

9.1: Intel Memory 21

Intel Memory Management
Every segment register has a “visible” part and a “hidden” part.
When a segment selector is loaded, the processor also loads the hidden part of the segment

register with the base address, segment limit, and access control information from the
descriptor pointed to by the segment selector.

This allows the processor to translate addresses without taking extra bus cycles to read the
base address and limit from the segment descriptor.

In systems in which multiple processors have access to the same descriptor tables, it is the
responsibility of software to reload the segment registers when the descriptor tables are
modified.

If this is not done, an old segment descriptor cached in a segment register might be used after
its memory-resident version has been modified.

Two kinds of instructions are provided for
loading the segment registers:

1. Direct load instructions such as the MOV,
LES, LGS, and LFS instructions explicitly
reference the segment registers.

2. Implied load instructions such as the far
pointer versions of the CALL, JMP, and
RET instructions, the SYSENTER and
SYSEXIT instructions, and the IRET,
INTn, INTO and INT3 instructions. These
instructions change the contents of the
CS register as an incidental part of their
operation.

9.1: Intel Memory 22

Intel Memory Management
3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a

system descriptor. The processor recognizes the following types of system descriptors:
• Local descriptor-table (LDT) segment descriptor.
• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.
These descriptor types fall into two categories: system-segment descriptors and gate

descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate

descriptors are in themselves “gates,” which hold pointers to procedure entry points in
code segments (call, interrupt, and trap gates) or which hold segment selectors for TSS’s
(task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate
descriptors.

9.1: Intel Memory 23

Intel Memory Management
3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment

descriptors (see Figure 3-10). A descriptor
table is variable in length and can contain up to
8192 (213) 8-byte descriptors.

There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Each system must have one GDT defined, which
may be used for all programs and tasks in the
system.

Optionally, one or more LDTs can be defined. For
example, an LDT might be defined for each
separate task being run.

The GDT is not a segment itself; instead, it is a
data structure in linear address space. The
base linear address and limit of the GDT must
be loaded into the GDTR register.

9.1: Intel Memory 24

Intel Memory Management
3.5.1 Segment Descriptor Tables
The LDT is located in a system segment of the

LDT type.

The GDT must contain a segment descriptor for
the LDT segment. If the system supports
multiple LDTs, each must have a separate
segment selector and segment descriptor in
the GDT.

An LDT is accessed with its segment selector. To
eliminate address translations when accessing
the LDT, the segment selector, base linear
address, limit, and access rights of the LDT are
stored in the LDTR register.

Coming up!! How does the Intel processor do paging?

