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Intel Memory Management
This set of slides is designed to explain the Memory Management Architecture used by 

Intel Pentium processors.
For these slides we will use the Intel document found at:

http://www.intel.com/design/processor/manuals/253668.pdf

Intel explains this document as a description of the hardware interface required by 
an Operating System in order to implement a Memory Management.

It’s assumed that you are familiar with the normal picture of 
memory management as presented in Chapters 8 & 9 in this 
course.
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How Do Operating Systems Use 
Memory Management

So I wrote a little program to probe the memory seen by a program.  I ran that same program 
on Windows 2000, Windows XP and RedHat LINUX.  I was looking at the addresses that 
were being used for various kinds of data/code in the program.  I probed the addresses by 
asking for memory continually until something broke.  For instance, did continual allocs 
until an error was returned.  Here’s a pseudo code of the program:

#define   ONE_MEG              1048576
#define  MEM_SIZE             3 * ONE_MEG
char GlobalMemory[MEM_SIZE];                   // This is a global/static variable

int    main( int argc, char  *argv[] )
{

int    FirstStackLocation;
int    Mode, Temp, *TempPtr;
int    Counter = 0;
void   *MemPtr, *LastPtr;

printf("Address of main(): %8X\n", (int)(&main) );
while ( TRUE )                                        // Find highest memory until seg. fault
{

TempPtr = (int *)((int)main + (CODE_JUMP * Counter) );    // Address of location
Temp = *TempPtr;
printf( "Got address %X\n", (int)((int)main + (CODE_JUMP * Counter) ) );
Counter++;

}
Keeps touching memory until it takes a fault
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How Do Operating Systems Use 
Memory Management

printf("Address Start of Global:  %8X\n", (int)(&GlobalMemory) );
printf("Address  End  of Global:  %8X\n", (int)(&GlobalMemory) + MEM_SIZE -1);
MemPtr = malloc( ONE_MEG );
printf("First location on heap:  %8X\n", (int)MemPtr );
while( (MemPtr = malloc( ONE_MEG )) != NULL )
{

LastPtr = MemPtr;
Counter++;
if ( Counter %100 == 0 )

printf("%5d alloc  on heap:%8X\n", Counter, (int)LastPtr +ONE_MEG - 1);
}
printf("Total bytes allocated:   %8X (Hex)\n", Counter * ONE_MEG );
printf("Last  location on heap:  %8X\n", (int)LastPtr );

}

#define    STACK_ALLOC    ONE_MEG
void RecursiveRoutine( )
{

char    Temp[ STACK_ALLOC ];

printf("Begin/End of this allocation: %8X %8X\n",
(int)&(Temp), (int)(&(Temp[STACK_ALLOC])) );

RecursiveRoutine();
}

Iterates on allocs

Iterates using lots of stack
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How Do Operating Systems Use 
Memory Management

So I wrote a little program to probe the memory seen by a program.  I ran that same program 
on Windows 2000, Windows XP and RedHat LINUX.  I was looking at the addresses that 
were being used for various kinds of data/code in the program.  I probed the addresses by 
asking for memory continually until something broke.  For instance, did continual allocs
until error was returned

1C0000x
~ 2 megabyte

16EF00x22EF00xStack

39800000x
~ 950 megabytes

3A261000x760000xHeap

300000x
~ 3 megabytes

703000x403000xStatic (Global) 
Data

002000x 
~ 8 Kbytes

403000x401000xCode

SizeLast AddressFirst AddressSegment

Windows XP Memory Usage

Note these 
addresses grow 

down!

The file 
MemoryDemo.exe 
is about  170Kbytes 
in size.

Declared a 3 Meg 
static array!.

Note:  100000x == 1 Megabyte
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How Do Operating Systems Use 
Memory Management

So I wrote a little program to probe the memory seen by a program.  I ran that same program 
on Windows 2000, Windows XP and RedHat LINUX.  I was looking at the addresses that 
were being used for various kinds of data/code in the program.  I probed the addresses by 
asking for memory continually until something broke.  For instance, did continual allocs
until error was returned

9640,0000x
~ 2.5 gigabyte

29BA,91E0xBFFB,7334xStack

B6000000x
~ 3 gigabytes

01CE,4000xB7EE,B000xHeap

300000x
~ 3 megabytes

8349A008049A00xStatic (Global) 
Data

001500x 
~ 6 Kbytes

8049900x8048400xCode

SizeLast AddressFirst AddressSegment

LINUX Memory Usage

Note these 
addresses grow 

down!

Declared a 3 Meg 
static array!.

How can this sum to 
more than 4 gigs??

Note:  100000x == 1 Megabyte
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How Do Operating Systems Use 
Memory Management

0x08048368 <main+0>:    55                   push   %ebp

0x08048369 <main+1>:    89 e5 mov    %esp,%ebp

0x0804836b <main+3>:    83 ec 08             sub    $0x8,%esp

0x0804836e <main+6>:    83 e4 f0             and    $0xfffffff0,%esp

0x08048371 <main+9>:    b8 00 00 00 00 mov    $0x0,%eax

0x08048376 <main+14>:   83 c0 0f             add    $0xf,%eax

0x08048379 <main+17>:   83 c0 0f             add    $0xf,%eax

0x0804837c <main+20>:   c1 e8 04 shr    $0x4,%eax

0x0804837f <main+23>:   c1 e0 04 shl    $0x4,%eax

0x08048382 <main+26>:   29 c4                sub    %eax,%esp

0x08048384 <main+28>:   83 ec 0c             sub    $0xc,%esp

0x08048387 <main+31>:   68 c0 84 04 08       push   $0x80484c0

0x0804838c <main+36>:   e8 1f ff ff ff       call   0x80482b0

0x08048391 <main+41>:   83 c4 10             add    $0x10,%esp

0x08048394 <main+44>:   e8 02 00 00 00       call   0x804839b <b>

0x08048399 <main+49>:   c9                   leave

0x0804839a <main+50>:   c3                   ret
1       void  b();
2       void  c();
3 int    main( )
4       {
5 printf( "Hello from main\n");
6           b();
7       }
8       // This routine reads the opcodes from memory and prints them out.
9       void   b()
10      {
11          char  *moving;
12
13          for ( moving = (char *)(&main); moving < (char *)(&c); moving++ )
14 printf( "Addr = 0x%x, Value = %2x\n", (int)(moving), 255 & (int)*moving );
15      }
16      void   c()
17      {
18      }
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Memory Layout
0x0804839b <b+0>:       55                   push   %ebp

0x0804839c <b+1>:       89 e5                mov    %esp,%ebp

0x0804839e <b+3>:       83 ec 08             sub    $0x8,%esp

0x080483a1 <b+6>:       c7 45 fc 68 83 04 08 movl   $0x8048368,0xfffffffc(%ebp)

0x080483a8 <b+13>:      81 7d fc d9 83 04 08 cmpl   $0x80483d9,0xfffffffc(%ebp)

0x080483af <b+20>:      73 26                jae    0x80483d7 <b+60>

0x080483b1 <b+22>:      83 ec 04             sub    $0x4,%esp

0x080483b4 <b+25>:      8b 45 fc             mov    0xfffffffc(%ebp),%eax

0x080483b7 <b+28>:      0f be 00             movsbl (%eax),%eax

0x080483ba <b+31>:      25 ff 00 00 00       and    $0xff,%eax

0x080483bf <b+36>:      50                   push   %eax

0x080483c0 <b+37>:      ff 75 fc pushl 0xfffffffc(%ebp)

0x080483c3 <b+40>:      68 d1 84 04 08       push   $0x80484d1

0x080483c8 <b+45>:      e8 e3 fe ff ff       call   0x80482b0

0x080483cd <b+50>:      83 c4 10             add    $0x10,%esp

0x080483d0 <b+53>:      8d 45 fc lea    0xfffffffc(%ebp),%eax

0x080483d3 <b+56>:      ff 00                incl (%eax)

0x080483d5 <b+58>:      eb d1                jmp 0x80483a8 <b+13>

0x080483d7 <b+60>:      c9                   leave

0x080483d8 <b+61>:      c3                   ret 1       void  b();
2       void  c();
3       int    main( )
4       {
5           printf( "Hello from main\n");
6           b();
7       }
8       // This routine reads the opcodes from memory and prints them out.
9       void   b()
10      {
11          char  *moving;
12
13          for ( moving = (char *)(&main); moving < (char *)(&c); moving++ )
14              printf( "Addr = 0x%x, Value = %2x\n", (int)(moving), 255 & (int)*moving );
15      }
16      void   c()
17      {
18      }
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Intel Memory Management

This is an overview of the hardware pieces provided by Intel.  
It’s what we have to work with if we’re designing an O.S.



9.1: Intel Memory 10

Intel Memory Management
The memory management facilities of the IA-32 architecture are divided into two 

parts:

Segmentation
Segmentation provides a mechanism of isolating individual code, data, and stack 

modules so that multiple programs (or tasks) can run on the same processor 
without interfering with one another. 

When operating in protected mode, some form of segmentation must be used.

Paging.
Paging provides a mechanism for implementing a conventional demand-paged, 

virtual-memory system where sections of a program’s execution environment 
are mapped into physical memory as needed. Paging can also be used to 
provide isolation between multiple tasks. 

These two mechanisms (segmentation and paging) can be configured to support 
simple single  program (or single-task) systems, multitasking systems, or 
multiple-processor systems that used shared memory.
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Intel Memory Management
See Figure 3-1.
Segmentation gives a mechanism for 

dividing the processor’s 
addressable memory space (called 
the linear address space) into 
smaller protected address spaces 
called segments. 

Segments are used to hold code, data, 
and stack for a program andr to 
hold system data structures (such 
as a TSS or LDT). 

Each program running on a processor, 
is assigned its own set of 
segments. 

The processor enforces the boundaries 
between segments and insures 
that one program doesn’t interfere 
with the execution of another .

The segmentation mechanism allows 
typing of segments to restrict 
operations that can be performed.
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Intel Memory Management
See Figure 3-1.
All the segments in a system are 

contained in the processor’s linear 
address space.

To locate a byte in a particular 
segment, a logical address (also 
called a far pointer) must be 
provided. 

A logical address has :
1. The segment selector – a unique 

identifier for a segment - provides 
an offset into a descriptor table 
(such as the global descriptor 
table, GDT) to a data structure 
called a segment descriptor. 
This segment descriptor
specifies the size of the segment, 
the access rights and privilege 
level for the segment, the segment 
type, and the location of the first 
byte of the segment in the linear 
address space (called the base 
address of the segment). 
See 3.4.2 Segment Selectors” 
for more details.

2. The offset part of the logical address -added to the 
base address for the segment to locate a byte 
within the segment. The base address plus the 
offset thus forms a linear address in the 
processor’s linear address space.
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Intel Memory Management
3.2.1  Basic Flat Model
The simplest memory model for a system is the 

basic “flat model,” 
the operating system and application programs 

have access to a continuous, unsegmented
address space. 

.
To implement a basic flat memory model with 

the IA-32 architecture, at least two segment 
descriptors must be created:

• one for referencing a code segment and 
• one for referencing a data segment (see 

Figure 3-2). 
• both segments, however, are mapped to 

the entire linear address space: that is, both 
segment descriptors have the same base 
address value of  0 and the same segment 
limit of 4 GBytes.
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Intel Memory Management
3.2.2 Protected Flat Model
The protected flat model is similar to the basic 

flat model, except the segment limits are set 
to include only the range of addresses for 
which physical memory actually exists (see 
Figure 3-3).

A protection exception is generated on any 
attempt to access nonexistent memory. 
This model provides a minimum level of 
hardware protection against some kinds of 
program bugs.

More complexity can be added to this protected 
flat model to provide more protection. 

Example: For the paging mechanism to provide 
isolation between user and supervisor code 
and data, four segments need to be 
defined: 

– code and data segments at privilege level 3 
for the user, 

– and code and data segments at privilege 
level 0 for the supervisor. 
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Intel Memory Management
3.2.3 Multi-Segment Model
A multi-segment model (shown here) uses the full capabilities of segmentation to provide 

hardware enforced protection of code, data structures, and programs and tasks. 
• each program (or task) has  its own table of segment descriptors and its own segments. 
• segments can be completely private to their programs or shared among programs. 
• Access to segments and to program environments is controlled by hardware.

Access checks can be used to protect not only 
against referencing an address outside the 
limit of a segment, but also against 
performing disallowed operations in certain 
segments. 

• The access rights information created for 
segments can also be used to set up 
protection rings or levels. 

• Protection levels can be used to protect 
operating system procedures from 
unauthorized access by application 
programs.
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Intel Memory Management
3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space of 4 

Gbytes (232 bytes). 
This is the address space that the processor can address on its address bus. This address 

space is flat (unsegmented), with addresses ranging continuously from 0 to FFFF,FFFFH. 
This physical address space can be mapped to read-write memory, read-only memory, 
and memory mapped I/O. The memory mapping facilities described in this chapter can be 
used to divide this physical memory up into segments and/or pages.

The IA-32 architecture also supports an extension of the physical address space to 236 bytes 
(64 GBytes); with a maximum physical address of F,FFFF,FFFFH. This extension is 
invoked 

• Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.
-- Talked about later.



9.1: Intel Memory 17

Intel Memory Management
3.4 LOGICAL AND LINEAR ADDRESSES
The processor uses two stages of address translation to arrive at a physical 

address: logical-address (via segments) translation and linear address space 
(via paging) translation.
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Intel Memory Management
3.4 LOGICAL AND LINEAR ADDRESSES
Every byte in the processor’s address space is accessed with a logical address. A logical

address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). 
.A linear address is a 32-bit address in the processor’s linear address space. The linear 

address space is a flat (unsegmented), 232-byte address space, with addresses ranging 
from 0 to FFFF,FFFFH. 

The linear address space contains all the segments and system tables defined for a system.
To translate a logical address into a linear address, the processor does the following:
1. Uses the offset in the segment selector to find the descriptor for the segment in the GDT or 

LDT and reads it into the processor, or uses the appropriate segment register.
2. Examines the segment descriptor to check the access rights and range of the segment –

makes sure the segment is accessible and has legal offset.
3. Adds the base address of the segment to the offset to form a linear address.
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Intel Memory Management
3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not 

point directly to the segment, but instead points to the segment descriptor that 
defines the segment. A segment selector contains the following items:

Index — Selects one of 8192 descriptors in the GDT or LDT. 
TI (table indicator) flag — Specifies the descriptor table to use: GDT or LDT
Requested Privilege Level (RPL) — Specifies the privilege level of the selector. 

The privilege level can range from 0 to 3, with 0 being the most privileged level. 



9.1: Intel Memory 20

Intel Memory Management
3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides registers for 

holding up to 6 segment selectors (see Figure 3-7).
Each of these segment registers support a specific kind of memory reference (code, stack, or 

data). 
At least the code-segment, data-segment, and stack-segment registers must be loaded for a 

program to run..
The processor provides three additional data-segment registers (ES, FS, and GS), which can be 

used to make other data segments available to the currently executing program (or task).

To access a segment, a program must 
get to it via a segment register. 

Although a system can define thousands 
of segments, only 6 can be available for 
immediate use. 

There are instructions available so the 
OS can set up segment registers.

Note how the address translation actually 
goes through the segment register rather 
than through the Descriptor Table.
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Intel Memory Management
Every segment register has a “visible” part and a “hidden” part.
When a segment selector is loaded, the processor also loads the hidden part of the segment 

register with the base address, segment limit, and access control information from the 
descriptor pointed to by the segment selector. 

This allows the processor to translate addresses without taking extra bus cycles to read the 
base address and limit from the segment descriptor. 

In systems in which multiple processors have access to the same descriptor tables, it is the 
responsibility of software to reload the segment registers when the descriptor tables are 
modified. 

If this is not done, an old segment descriptor cached in a segment register might be used after 
its memory-resident version has been modified.

Two kinds of instructions are provided for 
loading the segment registers:

1. Direct load instructions such as the MOV, 
LES, LGS, and LFS instructions explicitly 
reference the segment registers.

2. Implied load instructions such as the far 
pointer versions of the CALL, JMP, and 
RET instructions, the SYSENTER and 
SYSEXIT instructions, and the IRET, 
INTn, INTO and INT3 instructions. These 
instructions change the contents of the 
CS register as an incidental part of their 
operation.
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Intel Memory Management
3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a 

system descriptor. The processor recognizes the following types of system descriptors:
• Local descriptor-table (LDT) segment descriptor.
• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.
These descriptor types fall into two categories: system-segment descriptors and gate 

descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate 

descriptors are in themselves “gates,” which hold pointers to procedure entry points in 
code segments (call, interrupt, and trap gates) or which hold segment selectors for TSS’s
(task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate 
descriptors.
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Intel Memory Management
3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment 

descriptors (see Figure 3-10). A descriptor 
table is variable in length and can contain up to 
8192 (213) 8-byte descriptors. 

There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Each system must have one GDT defined, which 
may be used for all programs and tasks in the 
system. 

Optionally, one or more LDTs can be defined. For 
example, an LDT might be defined for each 
separate task being run.

The GDT is not a segment itself; instead, it is a 
data structure in linear address space. The 
base linear address and limit of the GDT must 
be loaded into the GDTR register. 
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Intel Memory Management
3.5.1 Segment Descriptor Tables
The LDT is located in a system segment of the 

LDT type. 

The GDT must contain a segment descriptor for 
the LDT segment.   If the system supports 
multiple LDTs, each must have a separate 
segment selector and segment descriptor in 
the GDT. 

An LDT is accessed with its segment selector. To 
eliminate address translations when accessing 
the LDT, the segment selector, base linear 
address, limit, and access rights of the LDT are 
stored in the LDTR register.

Coming up!!  How does the Intel processor do paging?


