
9: Virtual Memory 1

Jerry Breecher

OPERATING SYSTEMS

VIRTUAL MEMORY

9: Virtual Memory 2

VIRTUAL MEMORY
WHY VIRTUAL MEMORY?

• We've previously required the entire logical space of the process to be in memory
before the process could run. We will now look at alternatives to this.

• Most code/data isn't needed at any instant, or even within a finite time - we can bring it
in only as needed.

VIRTUES

• Gives a higher level of multiprogramming

• The program size isn't constrained (thus the term 'virtual memory'). Virtual memory
allows very large logical address spaces.

• Swap sizes smaller.

9: Virtual Memory 3

VIRTUAL MEMORY

Virtual memory
The conceptual separation
of user logical memory from
physical memory. Thus we
can have large virtual
memory on a small physical
memory.

Definitions

9: Virtual Memory 4

VIRTUAL MEMORY

Demand paging When a page is touched, bring it from secondary to main memory.

Overlays Laying of code data on the same logical addresses - this is the
reuse of logical memory. Useful when the program is in phases or
when logical address space is small.

Dynamic loading A routine is loaded only when it's called.

Definitions

9: Virtual Memory 5

VIRTUAL MEMORY
When a page is referenced, either as code execution or data access, and that
page isn’t in memory, then get the page from disk and re-execute the statement.

Here’s migration between
memory and disk.

Demand Paging

9: Virtual Memory 6

VIRTUAL MEMORY
One instruction may require several pages. For

example, a block move of data.

May page fault part way through an operation -
may have to undo what was done.
Example: an instruction crosses a page
boundary.

Time to service page faults demands that they
happen only infrequently.

Note here that the page table requires a "resident"
bit showing that page is/isn't in memory.
(Book uses "valid" bit to indicate
residency. An "invalid" page is that way
because a legal page isn't resident or
because the address is illegal.

It makes more sense to have two bits - one
indicating that the page is legal (valid) and
a second to show that the page is in
memory.

Demand Paging

1
1
1
1
0

0

�

Frame # valid-invalid bit

page table

1
0

1
0

Frame #

valid-
invalid

bit

Resid
ent

9: Virtual Memory 7

VIRTUAL MEMORY
STEPS IN HANDLING A PAGE FAULT

1. The process has touched a page not currently in memory.

2. Check an internal table for the target process to determine if the reference was
valid (do this in hardware.)

3. If page valid, but page not resident, try to get it from secondary storage.

4. Find a free frame; a page of physical memory not currently in use. (May need
to free up a page.)

5. Schedule a disk operation to read the desired page into the newly allocated
frame.

6. When memory is filled, modify the page table to show the page is now resident.

7. Restart the instruction that failed

Do these steps using the figure you can see on the next page.

Demand Paging

9: Virtual Memory 8

VIRTUAL MEMORY Demand Paging

9: Virtual Memory 9

VIRTUAL MEMORY

REQUIREMENTS FOR DEMAND PAGING (HARDWARE AND SOFTWARE) INCLUDE:

Page table mechanism

Secondary storage (disk or network mechanism.)

Software support for fault handlers and page tables.

Architectural rules concerning restarting of instructions. (For instance, block moves across
faulted pages.)

Demand Paging

9: Virtual Memory 10

VIRTUAL MEMORY
PERFORMANCE OF DEMAND PAGING

We are interested in the effective access time: a combination of "normal" and "paged"
accesses.

It’s important to keep fraction of faults to a minimum. If fault ratio is "p", then

effective_access_time = (1 - p) * memory_access_time
+ p * page_fault_time.

Calculate the time to do a fault as shown in the text:

fault time = 10 milliseconds (why)
normal access = 100 nanoseconds (why)

How do these fit in the formula?

Demand Paging

9: Virtual Memory 11

VIRTUAL MEMORY

Some of the pages belonging
to this process are in
memory, and some are on the
disk.

A bit in the page table tells
where to find the page.

The Picture When All
Pages Are Not In Memory

9: Virtual Memory 12

1. Find requested page on disk.
2. Find a free frame.

a. If there's a free frame, use it
b. Otherwise, select a victim
page.
c. Write the victim page to disk.

3. Read the new page into freed
frame. Change page and frame
tables.

4. Restart user process.

Hardware requirements include
"dirty" or modified bit.

VIRTUAL MEMORY Page Replacement
When we over-allocate memory, we need to push out something already in memory.

Over-allocation may occur when programs need to fault in more pages than there
are physical frames to handle.

Approach: If no physical frame is free, find one not currently being touched and free
it. Steps to follow are:

9: Virtual Memory 13

PAGE REPLACEMENT ALGORITHMS:

When memory is overallocated, we can either swap out some process, or overwrite some
pages. Which pages should we replace?? <--- here the goal is to minimize the number of
faults.

Here is an example reference string we will use to evaluate fault mechanisms:

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

VIRTUAL MEMORY Page Replacement

FIFO

Conceptually easy to implement; either use
a time-stamp on pages, or organize on a
queue. (The queue is by far the easier of
the two methods.)

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9: Virtual Memory 14

OPTIMAL REPLACEMENT

• This is the replacement policy that results in the lowest page fault rate.
• Algorithm: Replace that page which will not be next used for the longest period of

time.
• Impossible to achieve in practice; requires crystal ball.

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

VIRTUAL MEMORY Page Replacement

1

2

3

4

6 page faults

4 5

9: Virtual Memory 15

LEAST RECENTLY USED (LRU)

• Replace that page which has not been used for the longest period of time.
• Results of this method considered favorable. The difficulty comes in making it work.
• Implementation possibilities:

Time stamp on pages - records when the page is last touched.
Page stack - pull out touched page and put on top

Both methods need hardware assist since the update must be done on every instruction. So
in practice this is rarely done.

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

VIRTUAL MEMORY Page Replacement

1

2

3

5

4

4 3

5

8 page faults

9: Virtual Memory 16

PAGE REPLACEMENT ALGORITHMS :
Using another string:

VIRTUAL MEMORY Page Replacement

FIFO

OPTIMAL

LRU

9: Virtual Memory 17

LRU APPROXIMATION

Uses a reference bit set by hardware
when the page is touched. Then when a
fault occurs, pick a page that hasn't
been referenced.

Additional reference bits can be used to
give some time granularity. Then pick
the page with the oldest timestamp.

Second chance replacement: pick a
page based on FIFO. If its reference bit
is set, give it another chance. Envision
this as a clock hand going around a
circular queue. The faster pages are
replaced, the faster the hand goes.

Maintain a modified bit, and
preferentially replace unmodified pages.

VIRTUAL MEMORY Page Replacement

Second-Chance (clock)
Page-Replacement Algorithm

9: Virtual Memory 18

ADD HOC (OR ADD-ON) ALGORITHMS

These methods are frequently used over and above the standard methods
given above.

Maintain pools of free frames; write out loser at leisure

Occasional writes of dirties - make clean and then we can use them quickly
when needed.

Write out and free a page but remember a page id in case the page is needed
again - even though a page is in the free pool, it can be recaptured by a
process (a soft page fault.)

VIRTUAL MEMORY Page Replacement

9: Virtual Memory 19

ALLOCATION OF FRAMES:
What happens when several processes contend for memory? What algorithm
determines which process gets memory - is page management a global or local
decision?

A good rule is to ensure that a process has at least a minimum number of pages.
This minimum ensures it can go about its business without constantly thrashing.

ALLOCATION ALGORITHMS
Local replacement -- the process needing a new page can only steal from itself.
(Doesn't take advantage of entire picture.)

Global replacement - sees the whole picture, but a memory hog steals from
everyone else

Can divide memory equally, or can give more to a needier process. Should high
priority processes get more memory?

VIRTUAL MEMORY Page Allocation

9: Virtual Memory 20

Suppose there are too few physical pages (less than the logical pages being actively
used). This reduces CPU utilization, and may cause increase in multiprogramming
needs defined by locality.

A program will thrash if all pages of its locality aren’t present in the working set.

Two programs thrash if they fight each other too violently for memory.

VIRTUAL MEMORY Thrashing

9: Virtual Memory 21

Locality of reference: Programs access
memory near where they last accessed it.

VIRTUAL MEMORY Locality of Reference

9: Virtual Memory 22

WORKING SET MODEL

The pages used by a process within a window of time are called its working set.

VIRTUAL MEMORY Working Set Model

Changes continuously - hard to maintain an accurate number. How can the system use this
number to give optimum memory to the process?

9: Virtual Memory 23

VIRTUAL MEMORY Working Set Model

PAGE FAULT FREQUENCY

This is a good indicator of thrashing. If the process is faulting heavily, allocate it
more frames. If faulting very little, take away some frames.

9: Virtual Memory 24

PREPAGING

• Bring lots of pages into memory at one time, either when the program is
initializing, or when a fault occurs.

• Uses the principle that a program often uses the page right after the one
previously accessed (locality of reference.)

PAGE SIZE

• If too big, there's considerable fragmentation and unused portions of the page.

• If too small, table maintenance is high and so is I/O.

• Has ramifications in code optimization.

VIRTUAL MEMORY Other Issues

9: Virtual Memory 25

Memory Mapped IO

• Allows file I/O to be treated as routine memory access by mapping a disk
block to a page in memory

• A file is initially read using demand paging. Multiple page-sized portions of the
file are read from the file system into physical pages. Subsequent reads/writes
to/from the file are treated as ordinary memory accesses.

• Simplifies file access by treating file I/O through memory rather than read()
write() system calls

• Also allows several processes to map the same file allowing the pages in
memory to be shared

VIRTUAL MEMORY Other Issues

9: Virtual Memory 26

Memory Mapped IO

VIRTUAL MEMORY Other Issues

9: Virtual Memory 27

Program structure
– int data [128,128];
– Each row is stored in one page
– Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

– Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults

VIRTUAL MEMORY Other Issues

Which method should you
program??

9: Virtual Memory 28

Virtual memory is how we stuff large programs into small physical
memories.

We perform this magic by using demand paging, to bring in pages only
when they are needed.

But to bring pages into memory, means kicking other pages out, so we
need to worry about paging algorithms.

VIRTUAL MEMORY
Wrap up

