
8: Memory Management 1

Jerry Breecher

OPERATING SYSTEMS

MEMORY MANAGEMENT

8: Memory Management 2

What Is In This Chapter?

Just as processes share the CPU, they also share
physical memory. This chapter is about
mechanisms for doing that sharing.

OPERATING SYSTEM
Memory Management

8: Memory Management 3

MEMORY MANAGEMENT
Just as processes share the CPU, they also share physical memory. This section is about
mechanisms for doing that sharing.

EXAMPLE OF MEMORY USAGE:

Calculation of an effective address
� Fetch from instruction
� Use index offset

Example: (Here index is a pointer to an address)

loop:
load register, index
add 42, register
store register, index
inc index
skip_equal index, final_address
branch loop

... continue

8: Memory Management 4

MEMORY
MANAGEMENT

• The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management.

• Logical address – generated by the CPU; also referred to as virtual
address

• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-time and load-
time address-binding schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme

Definitions

8: Memory Management 5

MEMORY
MANAGEMENT

Relocatable Means that the program image can reside anywhere in physical memory.

Binding Programs need real memory in which to reside. When is the location of that
real memory determined?

• This is called mapping logical to physical addresses.
• This binding can be done at compile/link time. Converts symbolic to

relocatable. Data used within compiled source is offset within object
module.

Compiler: If it’s known where the program will reside, then absolute code is generated.
Otherwise compiler produces relocatable code.

Load: Binds relocatable to physical. Can find best physical location.

Execution: The code can be moved around during execution. Means flexible virtual
mapping.

Definitions

8: Memory Management 6

MEMORY
MANAGEMENT

Source

Object

Executable

In-memory Image

Compiler

Linker

Other Objects

Libraries
Loader

Binding Logical To Physical

This binding can be done at compile/link
time. Converts symbolic to relocatable.
Data used within compiled source is offset
within object module.

� Can be done at load time.
Binds relocatable to physical.

� Can be done at run time.
Implies that the code can be
moved around during
execution.

The next example shows how a compiler
and linker actually determine the locations
of these effective addresses.

8: Memory Management 7

4 void main()
5 {
6 printf("Hello, from main\n");
7 b();
8 }
9
10
11 voidb()
12 {
13 printf("Hello, from 'b'\n");
14 }

MEMORY
MANAGEMENT

Binding Logical To Physical

8: Memory Management 8

ASSEMBLY LANGUAGE LISTING

000000B0: 6BC23FD9 stw %r2,-20(%sp ; main()
000000B4 37DE0080 ldo 64(%sp),%sp
000000B8 E8200000 bl 0x000000C0,%r1 ; get current addr=BC
000000BC D4201C1E depi 0,31,2,%r1
000000C0 34213E81 ldo -192(%r1),%r1 ; get code start area
000000C4 E8400028 bl 0x000000E0,%r2 ; call printf
000000C8 B43A0040 addi 32,%r1,%r26 ; calc. String loc.
000000CC E8400040 bl 0x000000F4,%r2 ; call b
000000D0 6BC23FD9 stw %r2,-20(%sp) ; store return addr
000000D4 4BC23F59 ldw -84(%sp),%r2
000000D8 E840C000 bv %r0(%r2) ; return from main
000000DC 37DE3F81 ldo -64(%sp),%sp

STUB(S) FROM LINE 6
000000E0: E8200000 bl 0x000000E8,%r1
000000E4 28200000 addil L%0,%r1
000000E8: E020E002 be,n 0x00000000(%sr7,%r1)

000000EC 08000240 nop void b()
000000F0: 6BC23FD9 stw %r2,-20(%sp)
000000F4: 37DE0080 ldo 64(%sp),%sp
000000F8 E8200000 bl 0x00000100,%r1 ; get current addr=F8
000000FC D4201C1E depi 0,31,2,%r1
00000100 34213E01 ldo -256(%r1),%r1 ; get code start area
00000104 E85F1FAD bl 0x000000E0,%r2 ; call printf
00000108 B43A0010 addi 8,%r1,%r26
0000010C 4BC23F59 ldw -84(%sp),%r2
00000110 E840C000 bv %r0(%r2) ; return from b
00000114 37DE3F81 ldo -64(%sp),%sp

MEMORY
MANAGEMENT

Binding Logical To Physical

8: Memory Management 9

EXECUTABLE IS DISASSEMBLED HERE
00002000 0009000F ;
00002004 08000240 ; . . . @
00002008 48656C6C ; H e l l
0000200C 6F2C2066 ; o , f
00002010 726F6D20 ; r o m
00002014 620A0001 ; b . . .
00002018 48656C6C ; H e l l
0000201C 6F2C2066 ; o , f
00002020 726F6D20 ; r o m
00002024 6D61696E ; m a i n
000020B0 6BC23FD9 stw %r2,-20(%sp) ; main
000020B4 37DE0080 ldo 64(%sp),%sp
000020B8 E8200000 bl 0x000020C0,%r1
000020BC D4201C1E depi 0,31,2,%r1
000020C0 34213E81 ldo -192(%r1),%r1
000020C4 E84017AC bl 0x00003CA0,%r2
000020C8 B43A0040 addi 32,%r1,%r26
000020CC E8400040 bl 0x000020F4,%r2
000020D0 6BC23FD9 stw %r2,-20(%sp)
000020D4 4BC23F59 ldw -84(%sp),%r2
000020D8 E840C000 bv %r0(%r2)
000020DC 37DE3F81 ldo -64(%sp),%sp
000020E0 E8200000 bl 0x000020E8,%r1 ; stub
000020E4 28203000 addil L%6144,%r1
000020E8 E020E772 be,n 0x000003B8(%sr7,%r1)
000020EC 08000240 nop

MEMORY
MANAGEMENT

Binding Logical To Physical

8: Memory Management 10

EXECUTABLE IS DISASSEMBLED HERE
000020F0 6BC23FD9 stw %r2,-20(%sp) ; b
000020F4 37DE0080 ldo 64(%sp),%sp
000020F8 E8200000 bl 0x00002100,%r1
000020FC D4201C1E depi 0,31,2,%r1
00002100 34213E01 ldo -256(%r1),%r1
00002104 E840172C bl 0x00003CA0,%r2
00002108 B43A0010 addi 8,%r1,%r26
0000210C 4BC23F59 ldw -84(%sp),%r2
00002110 E840C000 bv %r0(%r2)
00002114 37DE3F81 ldo -64(%sp),%sp

00003CA0 6BC23FD9 stw %r2,-20(%sp) ; printf
00003CA4 37DE0080 ldo 64(%sp),%sp
00003CA8 6BDA3F39 stw %r26,-100(%sp)
00003CAC 2B7CFFFF addil L%-26624,%dp
00003CB0 6BD93F31 stw %r25,-104(%sp)
00003CB4 343301A8 ldo 212(%r1),%r19
00003CB8 6BD83F29 stw %r24,-108(%sp)
00003CBC 37D93F39 ldo -100(%sp),%r25
00003CC0 6BD73F21 stw %r23,-112(%sp)
00003CC4 4A730009 ldw -8188(%r19),%r19
00003CC8 B67700D0 addi 104,%r19,%r23
00003CCC E8400878 bl 0x00004110,%r2
00003CD0 08000258 copy %r0,%r24
00003CD4 4BC23F59 ldw -84(%sp),%r2
00003CD8 E840C000 bv %r0(%r2)
00003CDC 37DE3F81 ldo -64(%sp),%sp
00003CE0 E8200000 bl 0x00003CE8,%r1
00003CE8 E020E852 be,n 0x00000428(%sr7,%r1)

MEMORY
MANAGEMENT Binding Logical To Physical

8: Memory Management 11

Dynamic loading
+ Routine is not loaded until it is called
+ Better memory-space utilization; unused routine is never loaded.
+ Useful when large amounts of code are needed to handle infrequently occurring cases.
+ No special support from the OS is required - implemented through program design.

Dynamic Linking
+ Linking postponed until execution time.
+ Small piece of code, stub, used to locate the appropriate memory-resident library routine.
+ Stub replaces itself with the address of the routine, and executes the routine.
+ Operating system needed to check if routine is in processes’ memory address.
+ Dynamic linking is particularly useful for libraries.

Memory Management Performs the above operations. Usually requires hardware
support.

MEMORY
MANAGEMENT

More Definitions

8: Memory Management 12

MEMORY
MANAGEMENT

BARE MACHINE:

� No protection, no utilities, no overhead.
� This is the simplest form of memory management.
� Used by hardware diagnostics, by system boot code, real time/dedicated systems.
� logical == physical
� User can have complete control. Commensurably, the operating system has none.

DEFINITION OF PARTITIONS:

� Division of physical memory into fixed sized regions. (Allows addresses spaces to be
distinct = one user can't muck with another user, or the system.)

� The number of partitions determines the level of multiprogramming. Partition is given
to a process when it's scheduled.

� Protection around each partition determined by
bounds (upper, lower)
base / limit.

� These limits are done in hardware.

SINGLE PARTITION
ALLOCATION

8: Memory Management 13

MEMORY
MANAGEMENT

RESIDENT MONITOR:

� Primitive Operating System.

� Usually in low memory where interrupt vectors are placed.

� Must check each memory reference against fence (fixed or variable) in hardware or
register. If user generated address < fence, then illegal.

� User program starts at fence -> fixed for duration of execution. Then user code has
fence address built in. But only works for static-sized monitor.

� If monitor can change in size, start user at high end and move back, OR use fence as
base register that requires address binding at execution time. Add base register to
every generated user address.

� Isolate user from physical address space using logical address space.

� Concept of "mapping addresses” shown on next slide.

SINGLE PARTITION
ALLOCATION

8: Memory Management 14

MEMORY
MANAGEMENT

SINGLE PARTITION
ALLOCATION

CPU

MEMORY

Limit
Register

Relocation
Register

+<

No
Logical
Address

Yes

Physical
Address

8: Memory Management 15

JOB SCHEDULING

� Must take into account who wants to run, the memory needs, and partition
availability. (This is a combination of short/medium term scheduling.)

� Sequence of events:
� In an empty memory slot, load a program
� THEN it can compete for CPU time.
� Upon job completion, the partition becomes available.
� Can determine memory size required (either user specified or

"automatically").

CONTIGUOUS
ALLOCATION

MEMORY
MANAGEMENT

All pages for a process are
allocated together in one

chunk.

8: Memory Management 16

DYNAMIC STORAGE

� (Variable sized holes in memory allocated on need.)
� Operating System keeps table of this memory - space allocated based on

table.
� Adjacent freed space merged to get largest holes - buddy system.

ALLOCATION PRODUCES HOLES

OS

process 1

process 2

process 3

OS

process 1

process 3

Process 2
Terminates

OS

process 1

process 3

Process 4
Starts

process 4

CONTIGUOUS
ALLOCATION

MEMORY
MANAGEMENT

8: Memory Management 17

HOW DO YOU ALLOCATE MEMORY TO NEW PROCESSES?

First fit - allocate the first hole that's big enough.
Best fit - allocate smallest hole that's big enough.
Worst fit - allocate largest hole.

(First fit is fastest, worst fit has lowest memory utilization.)

� Avoid small holes (external fragmentation). This occurs when there are
many small pieces of free memory.

� What should be the minimum size allocated, allocated in what chunk size?
� Want to also avoid internal fragmentation. This is when memory is

handed out in some fixed way (power of 2 for instance) and requesting
program doesn't use it all.

CONTIGUOUS
ALLOCATIONMEMORY

MANAGEMENT

8: Memory Management 18

If a job doesn't fit in memory, the scheduler can

wait for memory
skip to next job and see if it fits.

What are the pros and cons of each of these?

There's little or no internal fragmentation (the process uses the memory given to it -
the size given to it will be a page.)

But there can be a great deal of external fragmentation. This is because the
memory is constantly being handed cycled between the process and free.

LONG TERM
SCHEDULING

MEMORY
MANAGEMENT

8: Memory Management 19

Trying to move free memory to one large block.

Only possible if programs linked with dynamic relocation (base and limit.)

There are many ways to move programs in memory.

Swapping: if using static relocation, code/data must return to same place.
But if dynamic, can reenter at more advantageous memory.

COMPACTION

OS

P1

P3

P2

OS

P1

P3

P2

OS

P1

P3

P2

MEMORY MANAGEMENT

8: Memory Management 20

• Logical address space of a process can be noncontiguous; process is
allocated physical memory whenever that memory is available and the
program needs it.

• Divide physical memory into fixed-sized blocks called frames (size is
power of 2, between 512 bytes and 8192 bytes).

• Divide logical memory into blocks of same size called pages.
• Keep track of all free frames.
• To run a program of size n pages, need to find n free frames and load

program.
• Set up a page table to translate logical to physical addresses.
• Internal fragmentation.

PAGINGMEMORY MANAGEMENT
New Concept!!

8: Memory Management 21

Address Translation Scheme

Address generated by the CPU is divided into:
• Page number (p) – used as an index into a page table which

contains base address of each page in physical memory.

• Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit.

PAGINGMEMORY MANAGEMENT

4096 bytes = 2^12 – it requires 12 bits to contain the Page offset

dp

8: Memory Management 22

Permits a program's memory to be physically noncontiguous so it can be allocated
from wherever available. This avoids fragmentation and compaction.

PAGING

HARDWARE
An address is determined by:

page number (index into table) + offset
---> mapping into --->

base address (from table) + offset.

Frames = physical blocks
Pages = logical blocks

Size of frames/pages is
defined by hardware (power
of 2 to ease calculations)

MEMORY MANAGEMENT

8: Memory Management 23

Paging Example - 32-byte memory with 4-byte pages

MEMORY MANAGEMENT
PAGING

0 a
1 b
2 c
3 d

4 e
5 f
6 g
7 h

8 I
9 j

10 k
11 l

12 m
13 n
14 o
15 p

0 5
1 6
2 1
3 2

Page Table

Logical Memory

0

4 I
j
k
l

8 m
n
o
p

12

16

20 a
b
c
d

24 e
f
g
h

28

Physical Memory

8: Memory Management 24

• A 32 bit machine can
address 4 gigabytes which
is 4 million pages (at 1024
bytes/page). WHO says
how big a page is, anyway?

• Could use dedicated
registers (OK only with
small tables.)

• Could use a register
pointing to table in memory
(slow access.)

• Cache or associative
memory

• (TLB = Translation
Lookaside Buffer):

• simultaneous search is fast
and uses only a few
registers.

MEMORY MANAGEMENT PAGING

IMPLEMENTATION OF THE PAGE TABLE

TLB = Translation Lookaside Buffer

8: Memory Management 25

IMPLEMENTATION OF THE PAGE TABLE
Issues include:

key and value
hit rate 90 - 98% with 100 registers
add entry if not found

Effective access time = %fast * time_fast + %slow * time_slow

Relevant times:
2 nanoseconds to search associative memory – the TLB.
20 nanoseconds to access processor cache and bring it into TLB for next time.

Calculate time of access:
hit = 1 search + 1 memory reference
miss = 1 search + 1 mem reference(of page table) + 1 mem reference.

MEMORY MANAGEMENT PAGING

8: Memory Management 26

SHARED PAGES

Data occupying one
physical page, but
pointed to by multiple
logical pages.

Useful for common code -
must be write protected.
(NO write-able data
mixed with code.)

Extremely useful for
read/write communication
between processes.

MEMORY MANAGEMENT PAGING

8: Memory Management 27

INVERTED PAGE TABLE:

One entry for each real page of
memory.

Entry consists of the virtual
address of the page stored in that
real memory location, with
information about the process that
owns that page.

Essential when you need to do
work on the page and must find
out what process owns it.

Use hash table to limit the search
to one - or at most a few - page
table entries.

MEMORY MANAGEMENT PAGING

8: Memory Management 28

PROTECTION:

•Bits associated with page tables.
•Can have read, write, execute, valid bits.
•Valid bit says page isn’t in address space.
•Write to a write-protected page causes a fault. Touching an invalid page causes a fault.

ADDRESS MAPPING:

•Allows physical memory larger than logical memory.
•Useful on 32 bit machines with more than 32-bit addressable words of memory.
•The operating system keeps a frame containing descriptions of physical pages; if allocated, then
to which logical page in which process.

MEMORY MANAGEMENT PAGING

8: Memory Management 29

MULTILEVEL PAGE TABLE

A means of using page tables
for large address spaces.

MEMORY MANAGEMENT PAGING

8: Memory Management 30

USER'S VIEW OF MEMORY

A programmer views a process consisting of unordered segments with various
purposes. This view is more useful than thinking of a linear array of words. We
really don't care at what address a segment is located.

Typical segments include

global variables
procedure call stack
code for each function
local variables for each
large data structures

Logical address = segment name (number) + offset

Memory is addressed by both segment and offset.

MEMORY MANAGEMENT Segmentation

8: Memory Management 31

HARDWARE -- Must map a dyad (segment / offset) into one-dimensional address.

MEMORY MANAGEMENT

CPU

MEMORY

Limit Base

+<

No

Logical
Address Yes

Physical
Address

Segment Table

S D

Segmentation

8: Memory Management 32

HARDWARE
base / limit pairs in a segment table.

MEMORY MANAGEMENT

1

3

2

4

1

4

2

3

Logical Address Space Physical Memory

0
1
2
3
4

Limit
1000
400
400
1100
1000

Base
1400
6300
4300
3200
4700

0

Segmentation

8: Memory Management 33

PROTECTION AND SHARING

Addresses are associated with a logical
unit (like data, code, etc.) so protection is
easy.

Can do bounds checking on arrays

Sharing specified at a logical level, a
segment has an attribute called
"shareable".

Can share some code but not all - for
instance a common library of subroutines.

MEMORY MANAGEMENT

FRAGMENTATION

Use variable allocation since
segment lengths vary.

Again have issue of fragmentation;
Smaller segments means less
fragmentation. Can use compaction
since segments are relocatable.

Segmentation

8: Memory Management 34

PAGED SEGMENTATION

Combination of paging and
segmentation.

address =
frame at (page table base for segment

+ offset into page table)
+ offset into memory

Look at example of Intel architecture.

MEMORY MANAGEMENT Segmentation

8: Memory Management 35

We’ve looked at how to do paging - associating logical with
physical memory.

This subject is at the very heart of what every operating
system must do today.

MEMORY MANAGEMENT
WRAPUP

