
CS 3013 Operating Systems 
WPI, C Term 2007 

Project 5 – Memory Management and Performance 
 
This project is to be done by each individual student.  It is NOT a group project 
 

Project Description  

The primary purpose of this project is to compare the performance of standard file I/O using the 
read() system call for input with memory-mapped I/O where the mmap() system call allows the 
contents of a file to be mapped to memory. Access to the file is then controlled by the virtual 
memory manager of the operating system. In both cases, you will need to use the open() and 
close() system calls for opening and closing the file for I/O. 

  
For the project, you should write a program proj5 that takes a file name as command-line 
argument and computes the percentage of printable characters in the file. To do so you should use 
two routines: isprint(), which determines if a byte value is a printable character; and isspace(), 
which determines if a byte is a space, newline, tab, etc. Check the man pages of these routines for 
details and the needed include file.  
 
The only output from the program should be two lines with the number of printable characters in 
the file, the number of whitespace characters in the file, the total number of bytes in the file and a 
percentage printed as an integer (rounded down to the next lowest percentage point) between 0 
and 100 such as:  
% proj5 proj5.c 

5730 printable  characters out of 5874 bytes,  97% 

1546 whitespace characters out of 5874 bytes,  26% 

The default behavior of the program should be to read bytes from the file in chunks of 1024 bytes 
using the read() system call. However your program should have an optional second argument 
that controls the chunk size for reading or to tell the program to use memory-mapped file I/O. In 
the latter case your program should map the entire contents of the file to memory. The syntax of 
your program:  

proj5 srcfile [size|mmap]  

where srcfile is the file on which to determine the percentage of printable and whitespace 
characters. If the optional second argument is an integer then it is the size of bytes to use on 
each loop when reading the file using the read() system call. Your program should enforce a 
chunk size limit of no more than 8192 (8K) bytes. Your program should traverse the buffer of 
bytes read on each iteration and keep track of the number of bytes and printable characters. 

  



If the optional second argument is the literal string “mmap” then your program should not use the 
read() system call, but rather use the mmap() system call to map the contents of srcfile to 
memory. You should look at the man pages for mmap() and munmap() as well as the sample 
program mmapexample.C for help in using these system calls. Once your program has mapped 
the file to memory then it should iterate through all bytes in memory to count printable characters. 
You should verify that the file I/O and memory mapped options of your program show the same 
output for the same file as a minimal test of correctness.  
 

Performance Analysis  

Once you have your program functionally working for both types of I/O then you need to perform 
an analysis to see which type of I/O works better for different size files. For this portion of the 
project, you should reuse the first part of Project 1, which allows you to collect system usage 
statistics. The two usage statistics of interest for this project are (hard and soft) page faults and the 
total response (wall-clock) time. A sample invocation of your proj5 program on itself using doit 
with the largest read size would be the following where proj5 prints its output and then doit prints 
the resource usage statistics for the program.  
% proj5 proj5.c 8192 

5730 printable  characters out of 5874 bytes,  97% 

1546 whitespace characters out of 5874 bytes,  26% 

< resource usage statistics for proj5 process >  

At the minimum, you must test your program running under five configurations for input files 
of different sizes. The five configurations are standard file I/O with read sizes of 1, 1K, 4K, and 
8K bytes as well as with memory mapped I/O. You should determine performance statistics for 
each of these configurations on a variety of file sizes. As an aid to finding a range of file sizes, the 
directory /var/lib/rpm on the CCC machines has some large files such as Filemd5s or 
Packages. You should look for other files with a range of sizes. 

Once you have executed your program with different configurations on a range of files, you 
should plot your results on two graphs where the file size is on the x-axis and the system statistic 
of interest (major page faults or wall-clock time) is on the y-axis. Each graph should have one 
line for the results of each configurations. 

You should include these graphs as well as a writeup on their significance in a short (1-2 
pages of text) report to be submitted along with your source code. You should indicate which 
configurations clearly perform better or worse than others on a given performance metric and 
whether there is clearly a “best practice” technique to use.  

 

Submission of Project  

Use turnin to turn in your project using the assignment name “proj5”. You should submit the 
source code for your program and a soft copy of your report.  



 
CS3013 – Operating Systems 

Project 5 Evaluation Sheet 
 
Name: 
 

Submission Mechanics 15 total 
You used turnin and followed the rules given above, thus saving the 
TA’s considerable time and effort. 

5 points 

When we cd into proj5, we can type “make” and the executable is 
produced from the source(s). 

5 points 

The code has comments and is structured – it’s not spaghetti code. 5 points 
  
Basic Commands 45 total 
Output format is as specified in the write-up. 15 points 
We have a number of scripts we will run.  These scripts will examine 
that your code is behaving the way it should.  These scripts will try files 
of various sizes as well as the configurations discussed in the writeup. 

 

We are unable to break your code using various input parameters. 10 points 
Student program gives the correct values for printable and whitespace 
characters. 

20 points 

  
  
Performance Analysis 40 total 
Various configurations and file sizes are analyzed. 15 points 
Graphs that make sense are submitted. 15 points 
The performance results are stated in a clear written fashion 10 points 

 
 
 
 
 
 
 
 


