
 1

CS 3013 Operating Systems

WPI, C Term 2007
Project 4 – It’s Always Wise To Synchronize

This project is to be done by each individual student. It is NOT a group project

Introduction
This assignment is intended to help you put into practice the concepts of synchronization and
resource sharing in a realistic setting where a number of “consumer” threads are used to handle
requests initiated by “consumer” threads. This situation mimics a server that uses several
threads to receive requests and then dispatches these requests to waiting consumer threads. For
this assignment you will be using threads along with thread synchronization primitives to
coordinate the actions of the threads.

Problem
The basic idea of this assignment is to use the initial (main) thread of your program to generate
producer and consumer threads to handle requests. Rather than receive requests from other
processes, your producer threads will generate requests at periodic intervals and place them in a
shared queue to be retrieved by one or more consumer threads to be serviced. This
configuration is shown in Figure 1.

Figure 1: Main Thread, Multiple producers and consumers, and a Queue of size qsize

Main Thread

Queue

Producer
Threads

Consumer
Threads

 2

The rate at which requests are produced is denoted as �. The rate at which they are consumed is
denoted as µ. The default value of both � and µ for this project is 10 requests/sec, indicating
that new requests arrive or are consumed every 1/10 sec. or 100,000µs. Each of these rates is
configurable as described later in this document. Just for clarification, these rates are as
viewed from the queue; each of the numproducers, for instance, will generate requests at a rate
of �/numproducers.

Main Thread

When your main thread begins, it first needs to set up and initialize global data structures as
well as synchronization primitives that will be shared by it and the other threads. The primary
data structure to be shared is the queue of requests as shown in Figure 1. Each request will be
denoted by the time when it is created. This value will be obtained via the gettimeofday()
system call and stored in a struct timeval structure (defined in <time.h>). The requests will be
stored in a linked list, with this list being singly or doubly linked.

Since the number of total requests is allowed to be very large, your producers should
generate/allocate entities called queue_entries and your consumers should release/free these
entities. These queue_entries should each contain a struct timeval Time, as well as the
appropriate forward (and possibly backward) pointers.

Semaphores need to be created to control access to the queue. These semaphores should be
created using the semaphore routines available with the pthread library package (see “Note”
later on.)

After creating the shared queue and semaphores, your main thread needs to create the

numproducer producer threads and numconsumer consumer threads. These numbers should be
set to the value of 1 by default. Again these values can be configured.

Before creating all of the other threads, your main thread should determine the average

interarrival time for requests by calculating 1/�. For example with � = 10 req/sec, the average
interarrival time should be 100ms or 100000µs. It should then calculate the interarrival time as
seen by EACH of the producer threads. The same calculation should be done for the service
times.

After initialization and thread creation, your main thread is to wait for all other threads to
complete (using pthread join) and print out results from this run of the program (see sample
output later in this document). The final task of the main thread is to cleanup data structures and
synchronization primitives that were created.

 3

Producer Threads
Rather than use a fixed interarrival time, you should use the average interarrival time to

generate a random value centered on the average. To do so, you should convert the interarrival
time to an integer number of microseconds and use the uniform() routine described later in this
document to obtain a uniformly distributed random number. Your threads should use the
usleep() call to sleep for the given number of microseconds before they each wake up, record
the current time of the request and try to place the newly generated “‘request” in the queue. If
the queue is full then your threads should block until space is available in the queue.

Remember, it is essential that any thread touching the queue and global variables get
semaphores before doing so.

Once the request has been placed in the queue then your threads should randomly
determine the amount of time until the next request and again use usleep() to wait the necessary
amount of time. Your threads should continue in this fashion until they have generated
numrequest requests where the default value for numrequest is 100.

Consumer Threads
Consumer threads should continually loop waiting for new requests to become available in

the queue. You will need to use semaphores to control access to the queue by these threads.
You will be using the Consumer Thread to determine several performance metrics.

Remember that the total time that a request lives is made up of its Queue Time and its Service
Time.

Total Request Time = Queue Time + Service Time

When a consumer thread removes a request from the queue it should obtain the current time

using gettimeofday(). Using that current time and time when the request was created, the
worker thread can determine the “Queue Time” for this request.

The worker thread next “services” the request by using a uniform random distribution based
on the service rate µ. For example if µ is 20 req/sec. then the average service time is 1/20 sec
(or 50000µs) and the uniform() function should be called to generate a uniform random value.
The worker thread should use usleep() to wait for this amount of time. Once it awakes it should
again call gettimeofday() to get the completion time for the request. It should use the
completion time and the request time to compute the “Total Request Time” for this request in
the system (includes both queue time and processing time). The queue time and total time
should be accumulated in shared global variables. Note access to these variables is shared
amongst all threads, so access to them needs to be protected. Consumer threads should continue
in this fashion until they have consumed numrequest items. At this point the threads should
terminate normally without adding any values to the cumulative variables.

 4

Basic Objective

The basic objective for the project, worth 80% of the points, is to write the code for the
described program with proper use of thread and synchronization primitives. As described here,
there are a number of parameters associated with the program. These parameters and their
default values are shown in Table 1.

Table 1: Configuration Parameters
Parameter Description Valid Range Default
numproducer Number of Producer Threads 1 – 10 1
numconsumer Number of Consumer Threads 1 – 10 1
qsize Queue Size 1 – infinity 10
numrequest Number of Requests 10 – infinity 100
arate Arrival rate, � req/sec 1 – 100 10
srate Service rate, µ req/sec 1 – 100 10

The default value should be used for each parameter unless overridden with an alternate
value specified on the command line when the program is started. Alternate values are specified
with parameter=value (note no space around the “=” sign) pairs. As part of startup your
program must process any command line arguments of this form. You may find functions such
as sscanf() or atoi useful for this processing. Your code must ensure that all specified parameter
values are in the range shown in Table 1. Should any specified value be outside of its valid
range then your program should report the error and immediately terminate.

Given this description, the following shows three sample runs of your program, which is
expected to compile to the executable “proj4”. As shown your program should initially print
out the parameter values used. Values for the average request queue and total time should be
shown as an integral number of micro-seconds. This output is intended to show the form of the
output and not necessarily the correct values.

%proj4

Parameter values:

numproducer=1 numcomsumer=1 qsize=10 numrequest=100 arate=10 srate=10

Results:

Average queue time = 155 useconds

Average total request time = 100158 useconds

%proj4 numconsumer=5 srate=20

Parameter values:

numproducer=1 numcomsumer=5 qsize=10 numrequest=100 arate=10 srate=20

Results:

Average queue time = 10 useconds

Average total request time = 50000 useconds

%proj4 numconsumer=5 srate=150

Parameter srate exceeds maximum value of 100.

 5

Random Distribution

Rather than use a fixed interarrival and service time, you should use a distribution that is
uniformly distributed around a given average (mean). In this program you need to use the
following uniform() function, which returns a random number between zero and twice the given
average.

int uniform(int avg)/* return a random integer i, 0 <= i < 2*avg */

{

int range = 2 * avg;

 return(random() % range);

}

Random number generators use “seed values” and in order to set the seed value for each
process’ random number generator you should use the routine srandom() (a man page exists for
random(3) and srandom(3)). Use srandom(getpid()); at the beginning of your code to set the
random number generator seed to a program-specific value.

What Does It Mean?

It is very possible to do this project and never really engage your brain. Sure you’ve gotten the
code to work – and it works correctly. But this project is REALLY about studying queuing and
its behavior. To show that you’ve engaged your brain on the level above simple coding,
include a document describing the meaning of your queuing system. What matters when
setting parameters; how does your system behave.

Note

The program makes use of the routines gettimeofday() and usleep(), which appear to provide
accuracy to the nearest microsecond. However, due to the granularity of the system clock
and other activity on the machine, it is unlikely that such precision will be obtained. For
purposes of this project, such imprecision is fine, and you should report the values you
obtain. Other useful functions are: sscanf, atoi, sem_init, sem_wait, sem_post, sem_destroy,
pthread_create, pthread_join, gettimeofday, and usleep.

Additional Work

For the remaining 20% of the project extend the output to include maximum queue length.
Results:

Average queue time = 10 useconds

Average total request time = 50000 useconds

Maximum queue length = 7

Design experiments that will answer the following questions:
a) What is the relationship between � and µ such that the maximum queue length remains

finite? Conversely, what causes the maximum queue length (and the average queue time)
to become larger and larger?

b) How should you specify numproducers and numconsumers so as to minimize the total time
for the requests.

Show how you designed your experiments – good design means changing a minimum number
of inputs on each test.

 6

Submission
Use the turnin command to submit your project with the project name of proj4.

 7

Evaluation Guidelines

Project 4

Submission Mechanics 15 total
You used turnin and followed the rules given above, thus saving the TA’s
considerable time and effort.

5 points

When we cd into proj4, we can type “make” and the executable is produced
from the source(s).

5 points

The code has comments and is structured – it’s not spaghetti code. 5 points

Basic Commands 65 total
Output format is as specified in the writeup. 10 points
Producer threads create requests using the time distribution uniform() 5 points
Consumer threads service requests using the time distribution uniform() 5 points
Program responds to all valid parameter values as specified in Table 1.
 Queue size can get very large and not run out of memory. 10 points
 Multiple producer and consumer threads 5 points
 Many requests without running out of resources. 5 points
 Other input parameters 5 points

Test script is included that allows exercise of parameters 10 points
Document submitted that describes the meaning of the created system 10 points

Additional Work 20 total
Output format is as specified in the write-up including Maximum queue
length.

5 points

Submission includes an additional file describing the details of the
experiments conducted and answering the questions raised in the Additional
Work section.

15 points

