CS-3013 and CS-502
Operating Systems

Hugh C. Lauer
Adjunct Professor (half-time)
Department of Computer Science

(Slides include materials from
Modern Operating Systems, 3rd ed., by Andrew Tanenbaum
and from Operating System Concepts, 7th ed., by Silbershatz, Galvin, & Gagne)
Outline for Today

• Details and logistics of this course
• Discussion
 – What is an Operating System?
 – What every student should know about them
• Project Assignment
 • Virtual Machines
• Introduction to Concurrency
This Course

- Two 2-hour classes per week
 - 12:00 noon – 2:00 PM, Tuesdays and Fridays
 - August 26 – October 11, 2011

- (Nearly) identical to first half of CS-502
 - First graduate course in Operating Systems

- Concentrated reading and project work

- Course web site:—

Parts of web site are protected in order to comply with copyright regulations.
Textbooks

No older editions!

2nd edition acceptable

Electronic 2nd edition on reserve
Supplemental Text

 - Denser and more encyclopedic
 - Aimed at professional Linux kernel developers
 - Two copies on reserve in Gordon Library
Recommended Background

• Computer Programming:—
 – C/C++ programming
 • Especially a low-level language such as C
 – Data structures
 – Computer Organization
 – Unix/Linux user experience

• Reading assignment
 – Tanenbaum Chapter 1
 – Quiz on Friday, September 2!
Schedule & Logistics

• Schedule
 – Lower Fuller Auditorium
 – 12:00 noon to 2:00 PM, Tuesdays and Fridays
 – One 5 minute break
 – 14 classes

• ~ 4 Programming Projects
 – 1-3 weeks each

• Mobile Phones, pagers and other similar devices SILENT during class

• Prof’s Office Hours
 – By appointment, or
 – 2:00-3:00 PM Tuesdays
 – 10:00-11:00 AM Fridays
 – Office: Fuller 144

• Contact
 – lauer in the domain cs.wpi.edu

• Course e-mail list
 – cs3013-all (in the same domain)
 – CS-3013-staff (Prof & TAs)
Weekly Quizzes

- One quiz each week!
 - Friday, Sept 2
 - Friday, Sept 9
 - Friday, Sept 16
 - Friday, Sept 23
 - Friday, Sept 30
 - Tuesday, Oct 11

- 20 minutes each
 - Except 30 minutes on October 11

- No final exam!
 - Must take October 11 quiz to pass course

Testing portion of grade based on best five of six quizzes
Projects

• Install Virtual Machine, build Linux kernel
 1. *Fork* — learn how to create and manage processes
 2. Simple modifications to Linux kernel

 Option 1
 3. Add messaging system to Linux kernel
 4. Serious multi-threaded test program

 Option 2
 3. Serious multi-threaded application
 4. Survey of different operating system types and capabilities

Introduction
Grading

- Quizzes – 42.5%
- Projects – 42.5%
- Class participation – 15%

- Good-faith attempt & submission of all projects required to pass this course!

WPI Academic Honesty Policy
http://www.wpi.edu/Pubs/Policies/Honesty/policy.html
More on Prerequisites

- C programming is essential
 - Java-only programmers will find it very challenging
- Time required
 - 15+ hours per week, 7 or 10 weeks total
- Computing resources required
 - Modern PC or Mac with > 15 gigabytes of free disk space
 - Preferably dual- or quad-core
 - Ability to install VMware Workstation, VMware Player software, or (for Mac) VMware Fusion
 - OR
- Virtual Fossil server
Ground Rule

• There are no “stupid” questions.

• It is a waste of your time and the class’s time to proceed when you don’t understand the basic terms.

• If you don’t understand it, someone else probably doesn’t, either.
Ground Rule #2

• Help each other!

• Even if a project or assignment is specified as *individual*, ask your colleagues about stuff you don’t understand.

• It is a waste of your time try to figure out some obscure detail on your own when there are lots of resources around.

• When you have the answer, *write it in your own words* (or own coding style)
Questions?
Instructor — Hugh C. Lauer
Adjunct Professor (half-time)

- Ph. D. Carnegie-Mellon 1972-73
 - Dissertation “Correctness in Operating Systems”
- Lecturer: University of Newcastle upon Tyne, UK
- Approximately 30 years in industry in USA
- Research topics
 - Operating Systems
 - Proofs of Correctness
 - Computer Architecture
 - Networks and Distributed Computing
 - Real-time networking
 - 3D Volume Rendering
 - Surgical Simulation and Navigation
 - …
Systems Experience

- IBM Corporation
- University of Newcastle
- Systems Development Corporation
- Xerox Corporation (Palo Alto)
- Software Arts, Inc.
- Apollo Computer
- Eastman Kodak Company
- Mitsubishi Electric Research Labs (MERL)
- Real-Time Visualization
 - Founded and spun out from MERL
 - Acquired by TeraRecon, Inc.
- SensAble Technologies, Inc.
- Dimensions Imaging, Inc. (recent start-up, now defunct)
VolumePro™

- Interactive volume rendering of 3D data such as
 - MRI scans
 - CT scans
 - Seismic scans
- Two generations of ASICs, boards, software
 - VolumePro 500 – 1999
 - VolumePro 1000 – 2001
- CTO, Chief Architect of VolumePro 1000
 - 7.5-million gate, high-performance ASIC
 - 10^9 Phong-illuminated samples per second
Sample images from VolumePro

[Images of medical scans and 3D reconstructions]
Operating Systems I have Known

- IBSYS (IBM 7090)
- OS/360 (IBM 360)
- TSS/360 (360 mod 67)
- Michigan Terminal System (MTS)
- CP/CMS & VM 370
- MULTICS (GE 645)
- Alto (Xerox PARC)
- Pilot (Xerox STAR)
- CP/M

- MACH
- Apollo DOMAIN
- Unix (System V & BSD)
- Apple Mac (v.1 – v.9)
- MS-DOS
- Windows NT, 2000, XP, Vista, 7, etc.

- various embedded systems
- Linux
- …
Other

- Two seminal contributions to computer science
 - *Duality hypothesis* for operating system structures (with Roger Needham)
 - First realization of *opaque types in type-safe* programming *languages* (with Ed Satterthwaite)
- 21 US patents issued
 - Computer architecture
 - Software reliability
 - Networks
 - Computer graphics & volume rendering
Outline for Today

• Details and logistics of this course
• Discussion
 – What is an Operating System?
 – What every student should know about them
• Project Assignment
 • Virtual Machines
• Introduction to Concurrency
Class Discussion

What is an Operating System?

(Laptops closed, please!)
What is an Operating System?

• Characteristics
 – Large, complex set of programs
 – Long-lived, evolutionary
 – Worked on by many people over many years

• Functions
 – Creates abstractions
 – Multiplexes concurrent activities
 – Manages resources
 – Mediates access to hardware devices
 – Provides a variety of services to users and applications
 – …
Definition – Abstraction

• The distillation of a complex mechanism into a simple, conceptual model

• User of abstraction does not need to worry about details

• Implementer of abstraction does not need to worry about how user will use it (within limits)
Abstraction

The most important word in this course!
What is an operating system?
(continued)

- **Abstractions:**
 - *Processes, threads,* and concurrent computation
 - *Virtual memory.* For managing memory
 - *Files.* Persistent storage of information
 - *Sockets & connections* for network communication
- **Controls I/O & peripherals**
- **Implements security and accessibility**

- **See §1.1 of Tanenbaum**

- **Definition — Same as judicial definition of pornography**

- “I cannot define it, but I sure can recognize one when I see it!”
OS and Hardware

- OS mediates programs’ access to hardware
 - Computation – CPU
 - Storage – volatile (memory) and persistent (disk)
 - Networks – NIC, protocols
 - I/O devices – sound cards, keyboards, displays
- OS creates uniform abstractions
 - Processes
 - Files
 - Sockets
 - Streams
Operating Systems – a Study of Evolution

- Simple managing of time of expensive computers
- Managing concurrency between I/O and computation
 - ... and users
 - ... and applications
- Managing memory
- Managing files, communication, GUIs
- Creating abstractions for all of the above
- ... and more!
What should every student of the Computational Sciences know about Operating Systems?

• Processes, threads, concurrent computation, & how to use them
• Memory Management, fragmentation, allocation, and virtual memory
• Files, persistent storage, and what they can do for you
• Protection, authentication, and what are those silly little keys they ask us about
• Different kinds of operating systems and what they are good for
Questions or Comments?
Outline for Today

- Details and logistics of this course
- Discussion
 - What is an Operating System?
 - What every student should know about them
- Project Assignment
 - Virtual Machines
- Introduction to Concurrency
More about Programming Projects

- Project work based on OpenSUSE Linux 11.4
- Each student will get a “virtual machine”
 - What is a virtual machine? (§1.7.5 & 8.3 in Tanenbaum)
- Build, modify, install Linux kernel on your virtual machine
 - Debug, analyze, crash
 - Restore, try again
Using a Virtual Machine

- Use VMware Workstation or VMware Player on your own PC

- VMware Fusion on your Macintosh

- Virtual Fossil Lab
 - Free Open Source Software Lab
 - No longer a “laboratory”
 - FossilVM.cs.wpi.edu
What is a Virtual Machine?

- An application that simulates a computer system with enough performance and fidelity to mimic actual hardware

- Concept originated in 1960s, and has been used occasionally in large systems

- Established in mainstream of enterprise systems by VMware in early 2000s.
 - By 2011, a number of high quality virtualization systems are available
Virtual Machine Definitions

• **Host system:** The hardware and operating system that supports the virtualization application
 • E.g., your own or company PC or Mac
 • E.g., a departmental server

• **Guest system:** The virtual hardware and the operating system that is being simulated
 • E.g., *OpenSUSE* Linux 11.4 for this course
Project 0 — Linux Dabbling

- Install your virtual machine and get it running
- Build and boot the Linux kernel
 - Identified by your name
- Submit a copy of the build record via the web-based Turnin system

Purpose:
- To make a dry run of project experience from start to finish!
- To get kernel build process “down pat”
Project 0 — Linux Dabbling (continued)

• Use the cookbook!

• Make sure that you can log into
 • Turnin system
 • FossilVM server (if appropriate)

• Due, Tuesday, August 30, 11:59 PM
Questions?
Before the Break

• Photos
 • To help me learn your names!

• Survey
 • To help me understand your background
Short Break

(Not enough time to go to Campus Center for lunch!)
What is an Operating System

Traditional OS

OS Kernel

Hardware Interfaces – Registers, etc.

Processor(s) I/O Controllers

XYZ Office Media Player Business Appl.

Prog. Tools Services UI/Shell/GUI

Practical OS
Computer System Organization

- user 1
- user 2
- user 3
- ...
- user n

- compiler
- assembler
- text editor
- ...
- database system

- system and application programs

- operating system

- computer hardware
Operating System Organization

Most of Vista’s problems are here

Most of Vista’s improvements are here

Utilities, tools,Window packages, program management, other stuff

System Libraries (user space)

Drivers & modules

Kernel

File Systems
Major Topics in Traditional OS Courses

- **structure**: how is the OS organized?
- **sharing**: how are resources shared across users?
- **naming**: how are resources named (by users or programs)?
- **security**: how is the integrity of the OS and its resources ensured?
- **protection**: how is one user/program protected from another?
- **performance**: how do we make it all go fast?
- **reliability**: what happens if something goes wrong – hardware or software
- **extensibility**: can we add new features?
- **communication**: how do programs exchange information
- **concurrency**: how are parallel activities created and controlled?
- **scale**: what happens as demands or resources increase?
- **persistence**: how do you make data last longer than program executions?
- **distribution**: how do multiple computers interact with each other?
- **accounting**: how do we keep track of resource usage, and charge for it?

- *Is user interface package part of operating system?*

Kinds of operating systems

- See §1.4 of Tanenbaum – *Operating System Zoo*
 - Mainframe Operating Systems
 - Server Operating Systems
 - Multiprocessor Operating Systems
 - Personal Computer Operating Systems
 - Handheld Computer Operating Systems
 - Embedded Operating Systems
 - Sensor Node Operating Systems
 - Real-time Operating Systems
 - Smart-card Operating Systems
 - …
Two Important Operating Systems

- Linux — Chapter 10
- Windows — Chapter 11
- Spans PCs, servers, multiprocessors, etc.
OS History – Unix & Linux

• Unix
 – Descendant of Multics
 – First “C” version in 1973 (DEC PDP-11)
 • Timesharing for < 10 users on 32K Memory
 • Many Unix versions at Bell Labs – different goals
 • Source code made available to Universities – BSD
 – Posix (start 1981) defines standard Unix system calls
 – AT&T licensing!
OS History - Linux

• Open Source – Linux.org
• First Version 1991, Linus Torvalds, 80386 processor
 – v.01, limited devices, no networking,
 – with proper Unix process support!
• 1994, v1.0
 – networking (Internet)
 – enhanced file system
 – many devices, dynamic kernel modules
OS History — Linux

• 1996, v2.0
 – multiple architectures, multiple processors
 – threads, memory management ….

• Gnome UI – introduced in 1999

• Recent
 – V2.4 - 3 million lines of code
 – 7-10 million users
 – Growth by 25%/year through 2003
 – Growing use in business server market

• Note: development convention
 – Odd numbered minor versions “development”
 – Even numbered minor versions “stable”
Linux Versions

- Linux 2.6.xx.yy has been the “stable” version for at least five years!
- Many revisions in xx and yy!
 - Including some rather major changes!
- Typical “social dynamic” of numbering systems!
OS History – Windows NT/2000/XP

- Key designer – David Cutler also designed VAX/VMS
- 1988, v1 - Win32 API – “microkernel”
- 1990, v3.1- Server and Workstation versions
- 1996, v4
 - Win95 interface
 - Graphics moved into kernel
 - More NT licenses sold than all Unix combined
 - Microkernel de-emphasized
OS History – Windows NT/2000/XP

• Windows 2000 – NT5.0
 – Multi-user (with terminal services)
 – Professional - desktop
 – Server and Advanced Server - Client-server application servers
 – Datacenter Server - Up to 32 processors, 64 GB RAM

• Windows XP
 – Windows 2000 code base
 – Revised UI
 – EOL for DOS/Windows line
OS History – Windows NT/2000/XP

- Microsoft has 80% to 90% of OS market
 - Desktops, laptops, servers, data centers, etc.
- Wintel – Windows + X86
- WinNT 4.x is 12 million lines of code
- Win2000 is 18 million lines of code
- Windows XP – approaching 10^8 lines of code
- Windows Vista – early 2006
- Windows 7 – 2010
Questions?