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ABSTRACT

An algorithm is described which guarantees reliable storage of data in a distributed system, -
even when different portions of the data base, stored on separate machines, are updated as
part of a single transaction. The algorithm is implemented by a hierarchy of rather simple
abstract machines, and it works properly regardless of crashes of the client or servers. Some
care is taken to state precisely the assumptions about the physical components of the system
(storage, pracessors and communications).
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1. Introduction

We consider the problem of crash recovery in a data storage system which is constructed from a
number of independent computers. The portion of the system which is running on some individual
‘computer may crash, and then be restarted by some crash recovery procedure. This may result in
the loss of some information which was present just before the crash. The loss of this information
may, in turn, lcad to an inconsistent state for the information permanently stored in the system.

For example, a client program may use this data storage system to store balances in an accounting
system. Suppose that there are two accounts, called A and B, which contain $10 and $15
respectively. Further, suppose the client wishes to move $5 from A to B. The client might proceed
as follows: A :

read account A (obtaining $10)
read account B (obtaining $15)
write $5 to account A
write $20 to account B

Now consider a possible effect of a crash of the system program running on the machine to which
these commands are addressed. The crash could occur after one of the write commands has been
carried out, but before the other has been initiated. Moreover, recovery from the crash could result
in never executing the other write command. In this case, account A could be Izft containing $5
and account B with $15, an unintended result. The contents of the two accounts are inconsistent.

There are other ways in which this problem can arise: accounts A and B are stored on two different
machines and one of these machines crashes; or, the client itself crashes after issuing one write
command and before issuing the other. )

In this paper we present an algorithm for maintaining the consistency of a file system in the
presence of these possible errors. We begin, in section 2, by describing the kind of system to which
the algorithm is intended to apply. In section 3 we introduce the concept of an atomic transaction.
We argue that if a system provides atomic transactions, and the client program uses them correctly,
then the stored data will remain consistent.

The remainder of the paper is devoted to describing an algorithm for obtaining atomic transactions.
Any correctness argument for this (or any other) algorithm necessarily depends on a formal model
of the physical components of the system. Such models are quite simple for correctly functioning
devices. Since we are interested in recovering from malfunctions, however, our models must be
more complex. Scction 4 gives models for storage, processors and communications, and discusses

the meaning of a formal model for a physical device. ~

Starting from this base, we build up the lattice of abstractions shown in figure 1. The second level
of this lattice constructs better-behaved devices from the physical ones, by eliminating storage
failures and eliminating communications entirely (section 5). The third level consists of two more
powerful primitives-which work properly in spite of crashes (scction 6). Finally, the highest level
constructs atomic transactions from these two primitives (section 7). A final section discusses some
efficiency and implementation considerations. Throughout we give informal arguments for the
correctness of the various algorithms. ' -
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2. System overview

Our data storage system is constructed from a number of computers; the basic service provided by
such a system is reading and writing of data bytes stored in the system and identified by integer
addresses. There are a number of computers which contain client programs (clients), and a number
of computers which contain the system (servers); for simplicity we assume that client and server
machines are disjoint. Each server has one or more attached storage devices, such as magnetic
disks. Some facility is provided for transmitting messages from one machine to another. A client
will issue each read or write command as a message sent directly to the server storing the addressed
data, so that transfers can proceed with as much concurrency as possible. Figure 2 illustrates the
. situation. » ' : _

We follow tradition in using a pair of integers <f, b> to address a byte, where f identifies the file
containing the byte, and b identifies the byte within the file. A file is thus a sequence of bytes
“addressed by integers in the range l..n, where n is the, length of the file. There are two commands
- available for accessing files: a generalized Read command, and a generalized Write command. The.
- generality allows information associated with a file other than its data bytes to be read and written,
for example its length, or protection information associated with the file; these complications are
irrelevant to our subject and will not be mentioned again. A client requests the execution of a
command by sending a message containing the command to the appropriate server. When the
command has been completed, the server sends a message to the client containing a response. In
the case of a read command, this response will contain the requested data. For a write command,
the response is simply an acknowledgement. It is nccessary to provide interlocks between the
concurrent accesses of different clients. . , e " :

It should now be clear that our distributed data storage system is not a distributed data base system.
Instead, we have isolated the fundamental facilities required by a data base system, or any other
system requiring long-term storage of information: randomly addressable -storage of bits, and
arbitrarily large updates which are atomic in spite of crashes and concurrent accesses. We claim
that this is a sound foundation for a data base system; if it proves to be unsatisfactory, the problem
will be inadequate performance. _ :

Pl
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3. Consistency and transactions

For any system, we say that a given state is consistent if it satisfies some predicate called the
invariant of the system. For example, an invariant for an accounting system might be that asscts
‘and liabilities sum to zero. The choice of invariant obviously depends on the application, and is
beyond the scope of a data storage system. The task of the storage system is to provide facilities

which, when properly used, make it possible for a client application program to maintain its

invariant in spite of crashes and concurrent accesses.

A suitable form for such facilities is suggested by the following observation. Any computation
which takes a system from one state to another can be put into the form 5

: State := K{slate) - : _ - . a .
-where F is a function without side effects. If we describe the state as the product of the states of a
‘number of components, we can make finer distinctions by writing this as - i

: state := [ RUsesp (state)) , Unchanged, (state) ] ) ‘

where Usespand Unchanged,. are projections from the state space into subspaces, such that i'énge(F)
X range(Unchangedy) is the entire state space. For simplicity we assume that range(F) C
range(Usesp). w - el 1 iy W » —
* That is, the assignment gxctuaily needs to write only those parts of the state which are actually
ghanged by the computation. Such a computation will clearly be atomic in the presence of crashes
if the assignment is atomic in the presence of crashes, ie., if either all the writes are done, or none.
- of them are. Two such computations F and G may run concurrently and still be atomic (ie., .
.. serializable) if range(F) M range(Usesp)=0 and vice versa. ’ ' '

" In pursuit of this idea, we introduce the notion of a transaction (the same concept is used in

- [Eswaren et. al], and elscwhere in the database literature, to define consistency among multiple -

users of a common data base). A transaction is a sequence of read and write commands sent by a_
.client to the filé system. The write commands may depend on the results of previous read -
commands in the same transaction. The system guarantees that after recovery from a system crash,

" for each transaction, cither all of the write commands will have been executed, or none-will have
~ been. We call this the atomic property for transactions. The client will indicate the commands of a
transaction by surrounding them with Begin and End commands. If the client fails to issue the end
transaction command (perhaps because he crashes) then a time-out mechanism will eventually abort
. the transaction without executing any of the write commands. In addition, transactions appear
~ atomic with respect to other transactions which may be executing concurrently; that is; therc exists
some serial order of execution which gives the same results. v

- Assuming this atomic property for transactions, consider how the previous example might be
- implemented by a client. The client first issues a Begin command, and then continues just as in the
example in section 1. After sending the two write commands, he sends End. This transaction
~moves $5 from A to B. Notice that the client waits for the responses to the read, commands, then
computes the new balances, and finally issues write commands containing the new balances.

* A client may decide to terminate a transaction before it is completed. For this purpose we have an
additional command, Abort. This terminates the transaction, and no write commands issued in the
. transaction will take cffect. Because the system also times out transactions, the Abort command is
“logically unnecessary, but the action it causes also occurs on a timeout and hence must be
implemented in the system. - : . -

Thus, we have two groups of commands, which constitute the entire interface between the data
storage system and its clients: - A A '
Data commands: Read Write
- Control commands: Begin, End, Abort A _
We shall return to transactions in scction 7 after laying some necessary groundwork.

P
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4. The physical system

To show the correctness of our algorithms in spite of imperfect disk storage, processor failures
(crashes) and unreliable communications, we must have a formal modecl of these devices. Given this
model, a proof can be carried out with any desired degree of formality (quitc low in this paper).
The - validity of the model itself, however, cannot be established by proof, since a physical system
does not have formal properties, and hence its relation to a formal system cannot be formally
shown. The best we can do is to claim that the physical system will behave like the formal system

- with some probability 1-p, and that p is small enough. The correctness of this claim can only be
established by experience. - . L n S - _ , Lot

In constructing our model, we have tried to represent all the properties of the underlying physical
systems, and to assign appropriate probabilities to the various events which can occur. We believe
that systems constructed from current hardware can be expected to function as described by the
- model for years or centuries. The reader must make his own judgment about the truth of this

- claim,

In order to make our assumptions about possible failures more explicit, and we hope more
convincing, we divide the events which occur in the model into two categories: desired and
undesired;, in a fault-free system only desired events will occur. Undesired events are subdivided
into expected and unexpected. Our algorithms are designed to work in the presence of any bounded
number of expected events and no unexpected events. The probability p referred to above is
thercfore the probability of an unexpected event. The value of p can only be estimated by an
exhaustive enumeration of possible failure mechanisms. Whether a given p is small enough depends
on the needs of the application. . . . - : - :

Our general theme is that, while errors may occur, all expected errors will be detected and dealt
with before they cause incorrect behavior. In the remainder of this section, we present our model
for the thrce main physical components on which our system depends: disk storage, processors and
communications. In the next section, we describe how undesired events are handled; in general this
is done by constructing higher-level abstractions for which desired events are the only expected
ones. > 2 o :

4.1 Disk storage

Our model for disk storage is a set of addressable pages, where each page contains a status (good,
- bad) and a block of data; if the status is bad, the data is not meaningful. There are two actions by
"which a processor can communicate with the disk: ol

. procedure Puf{at: Address, data: Dblock) B I
procedure Gef{at: Address). retumns (status: (good, looksBad), data: Dblock)

Put does not return status, because things which go wrong when writing on the disk are usually not
. detected by current-hardware, which lacks read-after-write capability. The extension to a model in
which a Put can return bad status is trivial. : :

We consider two kinds of events: those which are the result of the processor actions Get and Puf,
and those which are spontaneous. : : . :

The results of a Gef{ar: a) are: ,
(desired) If page a is (good, d), then returns (good, d).
(desired) If page a is bad, then returns looksBad. .

(expected) Soft read error: if page a is good, then returns looksBad, Since. we tolerate only
a bounded number of undesired cvents, if page a is (good, d), then repeating Get a bounded
number of times will eventually result in (good, d).

(unexpected) Undetected error: if page a is bad, then returns good, or if page a is (gaod- a),.
then returns (good, d') with d'#d. .

'(,.,a
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The cffects of a Puf{at: a, data: d) are: | : B
(desired) Page a becomes (good, d). ' i "» , g
. (expected) Write error: page a is unchanged, or page a becomes bad.

The remaining undesired events, called decays, model various kinds of accidents. To describe them
we need some preliminaries. Each decay event will damage some set of pages, which are contained
in some larger set of pages which is characteristic of the decay. For example, a decay may damage
many pages on one cylinder, but no pages on other cylinders: or many pages on one surface, but no
~ pages on other surfaces. We call these characteristic sets decay sets. Two pages are decay related if
- there is some decay set which contains both. We also assume a partitioning of the disk pages into

units, and a time interval Ty, called the unit decay time. We assume that any decay set is wholly ey

contained in one unit, and that it is possible to partition each unit into pairs of pages which ‘are not
decay-related (in order to construct stable storage; see 5.1). T, must be very long compared to the
time required to read all the’ disk pages. ' S ~ omi S

A decay is a spontaneous event in which some set of pages, all within some one characteristic decay
set, changes from good to bad, We now consider ‘the following spontancous events:

(expected) Infrequent decay: a decay preceded and followed by an intcrval Tp during which
- there is no other decay in the same unit, and the only bad Puss on that urit are to pages in
- the characteristic set of the decay. Because units can be bounded in size, the stringency of
the infrequency assumption does not depend on the total size of the syster.

,, .+ (unexpected) Frequent decay: two decays in the same unit within an interval Tp.

(unexpected) Undetected error: some page changes from bad to good, or from (good, d) to
(good, d) with d’#d. e X : '

~ Other events may be obtained as combinations of these events. For example, a Put changing the
wrong page could be considered as one in which the addressed page is unchanged (cxpected) and
- some other page spontaneously changes to a new good value (unexpected). One consequence of this
model is that writing correct data at the wrong address is an unexpected event and hence cannot be
.tolerated. - " ) ~,

.- 4.2 - Processors and crashes ]

Our model of a processor is conventional except for the treatment of crashes. A processor consists

of a collection of processes and some shared state. Fach process is an automaton with some local

state, and makes state transitions (executes instructions) at some finite rate. Instructions can read

-and write the shared state as well as the local state of the process; some standard kind of
. synchronization primitive, such as monitors, allows this to be done in an orderly way. For

simplicity we consider the number of processes to be fixed, but since a process may enter an idle

state in which it is simply waiting to be reinitialized, our model is equivalent to one with a varying
but bounded number-of processes. The union of the shared state and the process states is the state

of the processor. A processor can also interact with the disk storage and the communications as

described in sections 4.1 and 4.3. ' ' i L .

A crash is an undesired but expected event which causes the state of the processor to be reset to
some standard value; because of this effect, the processor state is called volatile state. This implies
that the processor retains no memory of what was happening at the time of the crash. Of course
. the disk storage, or other processors which do not crash, may retain such memory. In a system with
~ interesting long-term behavior, such as ours, a processor recovering from a crash will examine its
disk storage and communicate with other processors in order to reach a state which is an acceptable
approximation 1o its state before the crash. Since a crash is expected, it may occur at any time;
hence a crash may occur during crash recovery, another crash may occur during recovery from that
crash, and so forth. _ ] ,

D
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Our model includes no expected cvents in the processor other than desired events and crashes. The
assumption is that any expected undesired event will be detected (by some kind of consistency
checking) and converted into a crash before it affects any other part of the system. It may well be
questioned whether this assumption is realistic. , .

4.3 Communications

Our model for communications is a set of messages, where each message contains' a status (good, -
bad), a block of data, and a destination which is a processor. Since we are not concerned with
authentication in this paper, we assume that the source of a message, if it is needed, will be encoded
in the data. There are two actions by which a processor can communicate with another one:

procedure _.S'end(lo: Processor, data: Mblock) | '
procedure Receive returns (status: (good, bad), data: Mblock) .

The similarity to the actions for disk storage is not accidental. Because messages are not permanent’
objects, however, the undesired events are somewhat simpler to describe. The possible events are as
follows: - e i e, _
- The possible results of a Receive executed by processor p are: : .
(desired) If a message (good, d, p) exists, returns (good d) and destroys the message.
(desired) If a bad message exists, returns bad and destroys the message. '
~ There may be an arbitrary delay before a Receive returns. =
The effects of a Send(to: q, data: d) are: '
~* (desired) Creates a. message (good d g).
Finally, we consider the following spontaneous events:
(expected) Loss: some message is destroyed. i
‘(expected) Duplication: some new message identical to an existing message is created.
(expected) Decay: some message changes from good to bad. _ N
(unexpected) Undetected error: some message changes from bad to good, or from (good, d,
- q) to (good d, q) with d%d or g4 ' -

As with disk storagé, other undesired events can be obtained as combinations including these
. Spontancous events. o 5 e ' _
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5. The stable system

The physical devices described in the previous section are an unsatisfactory basis for the
construction of systems. Their behavior is uncomfortably complex; hence there are too many cases

‘to be considered whenever an action is invoked. In this section we describe how to construct on

top of these devices a more satisfactory sct of virtual devices, with fewer undesired properties and
more convenient interfaces. By eliminating all the undesired events, we are able to convert disk
storagc into an ideal device for recording state, called stable storage. Likewise, we are able to

cenvert communications into an ideal device for invoking procedures on a remote processor. By

"ideal” in both cases we mean that with these devices our system behaves just like a conventional
error-free single-processor system, except for the complications introduced by crashes.

~ " We have not been so successful in conccaling. the undesired behavior of processors. In fact.'the 1|

- remaining sections of the paper are devoted to an explanation of how to deal with crashes. The
" methods for doing this rely on some idealizations of the physical processor described in section 5.2.
5.1 Stable sta'fagé ,

- The disk storage not used as volatile storage for brocessor state (see 5.2) is converted into stable

storage with the same actions as disk storage, but with the property that no undesired cvents can

~occur (except unexpected ones). Since the only desired events are ideal reads and writes, stable

storage is an ideal storage medium, with no failure modes which must be dealt with by its clients.

""'I"o -construct stable storage, we introduce two successive abstractions, cach of which eliminates two -

of the undesired events associated with disk storage. The first is called careful disk storage; its state
and actions are specified exactly like those of disk storage, except that the only expected events are
a bad write immediately followed by a crash, and infrequent decay. A careful page is represented
by a disk page. CarefulGet repeatedly does Get until it gets a good status, or until it has tried z
times, where n is the bound on the number of soft read errors. This eliminates soft read errors.

" Careful Put repeatedly does Put followed by Ger until the Get returns good with the data being

written. This climinates write errors which don’t change the page; it also eliminates write errors
which leave a bad page, provided there is no crash during the CarefulPut. Since crashes are
expected, however, this isn’'t much use by itself. _ :

‘A more complicated construction is needed for stable storage. A stable page consists simply of a

block of data. In addition to Get and Put, it has a third action called Cleanup. It is represented by
an ordcred pair of careful disk pages, chosen from the same unit but not decay-related. The
definition of units ensures that this is possible, and that we can use all the pages of a unit for stable

.pages. The value of the data is the data of the first representing page if that page is good, otherwise
~ - the data of the second page. The representing pages-are protected by a monitor which ensures that
~ only one action can be in progress at a time. Since the monitor lock is held in volatile storage and

hence is released by a crash, some care must be taken in analyzing what happens when there is a

. crash during an update operation. - _ :

We maintain the following invariant on the representing pages: not more than one of them is bad,

and if both are good they both have the data written by the most recent StablePut, except during a
StablePut action. The second clause must be qualified a little: if a crash occurs during a StablePut,
the data may remain different until the end of the subsequent crash recovery, but thereafter both
pages’ data will be either the data from that StablePut or from the previous one. Given this

‘invariant, it is clear that only the desired and the unexpecled events for disk pages are possible for
- stable pages. , ‘ eam P s -

Another way of saying this is that StablePut is an atomic operation: it either changes the page to the
desired new value, or it docs nothing and a crash occurs. Furthermore, no decay is possible.

The ‘actions are implemented as follows. A StableGet does a CarefulGet from one of the
representing pages, and if the result is bad docs a CarefulGet from the other one. A StablePut does
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a CarefulPut to cach of the representing pages in turn; the sccond Careful Put must not be started <« ~°
until the first is complete. Since a crash during the first CarefulPut will prevent the sccond one - -
from being started, we can be sure that if the second CarefulPut is started, there was no write error
in the first one. c o '

The .third action, called Cleanup, works like this: ]
Do a CarefulGet from each of the two representing pages;
-~ if both return good and the same data then
. Do nothing =~ »
else if one returns bad then ke oy g o
' { One of the two pages has decayed, or has suffered a bad write error in a
CarefulPut which was interrupted by a crash. } ™ ol TN ol "B
121% a CarefulPut of the data block obtained from the good address to the bad .
- address. 0 W : - ' o :
else if both return good, but different data then T =y =
’ { A crash occurred between the two CarefulPuts of a StablePut '}
Choose either one of the pages, and do a CarefilPut of its data to the other page.

' Thi§ action is applied to each stable,pége after a crash before normal operation of the system '
begins, and at least every unit decay - time Tp thereafter. » .

i

~To show that the invariant holds, we assume that it holds when stable storage is initialized, and
- -consider all possible combinations of events. The detailed argument is a tedious case analysis, but
the essence of it is simple. Both pages cannot be bad for the following reason. Consider the first
page to become bad; it either decayed, or it suffered a bad Put during a StablePut. In the former
case, the other page cannot decay or suffer a bad Puz during an interval Tp. and during this

interval a Cleanup will fix the bad page. In the latter case, the bad Pur is corrected by the
CarefulPut it is part of, unless there is a crash, in which case the Cleanup donc during the ensuing -
crash recovery will fix the bad page before another Put can be done. If both pages are good but
different, there must have been a crash between the CarefulPuts of a StablePut, and the ensuing
Cleanup will force either the old or the new data into both pages. -

“ Although we make no use of it in this paper, it is interesting to observe that the method used to .
implement StablePut can actually be used for writing a large amount of data atomically (as long as -
it fits in half a unit). Instead of using a pair of pages to represent a stable page, we use a pair of
arrays of pages, where none of the pages in ene array is decay-related to any page in the other. We

~.need to extend to thesc arrays the property of disk pages that a write does nothing, succeeds, or

leaves the page bad; this is easily done by writing a unique identifier into each page, and checking

. on a Get that all the unique identifiers are the same. We also need to know during crash recovery

~-which pages are in the arrays; this can be permanently fixed, or recorded in ordinary stable storage.

- The stable storage construction can be extended to deal with disk storage which is less welt behaved
than ours. For instance, suppose that a Puf(a, d) can leave (good d) in p, with d:d. By using
three disk pages to represent a stable page, we can handle this possibility. Such increased
redundancy can also take care of more frequent decays than we have assumed possible.

- To simplify the exposition in the next three sections, we assume that all data is held in stable - _
storage. The-cost of protecting against all expected undesired events is significant, however, and it
may not be appropriate to pay this cost for all the data recorded in the system. In particular, client
data may not all have the same need for protection against decay; typically, much of it can be
reconstructed from other information at some tolerable cost, or has a fairly small value to the client.
Hence our system makes provision for recording client data with or without the duplication
described below. - The same is true’ for the index which the system maintains to enable rapid
random access to the data in files; it is cheaper to provide the necessary redundancy by recording
the file address for each page with the page itself, and reconstructing the index from this
information in case it is lost. The complications associated with doing this corrrectly are discussed -

ﬁa ]
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in scction 8.
- 5.2 Stable processors

A stable processor differs frorn a physmal one in three ways. Fxrst, it can make use of a pomon of

- the disk storage to store its volatile state; as with other aspects of a processor, long term reliability
of this disk storage is not important, since any failure is converted into a crash of the processor.

Thus the disk storage used m [hlS way becomes volatile. =

Second, it makes use of stable storaoe to obtain more useful behavror after a crash as follows. A
rocess can save its state; after a crash each process is restored to its most recently saved state. Save

. . is an atomic operation. The state is saved in stable storage, using the simple one-page atomic

StablePut action. As a consequence, the size of the state for a process is limited to a few hundred
bytes. This restriction can easily be removed by techniques discussed later in the paper, but in fact’

- our algorithms do not require large process states. There is also a Reset operation which resets the ,
. saved state, so that the process will return to its 1d1e state after a crash

 “Third, it makes use of stable storage to construct stable monitors [ref Hoarc]. Recall that a monitor

* is a collection of data, together with a set of procedures for examining and updating the data which
- have the property that only one process at a time can be executing one of these procedures. This

-~ mutual exclusion is provided by a monitor lock which is part of the data. A stable monitor is a
monitor whose data, except for the lock, is in stable storage. It has an image in global volatile
storage which’ contains the monitor lock and perhaps copies of some of the monitor data. The

" monitor’s procedures acquire this lock, read any data they need from stable storage, and return the
.- proper results. A procedure which updates the data must do so with exactly one StablePut. Saving
~_the process state is not permitted within the monitor; if it were, a process could find itself runnm°
“in the monitor after a crash thh the lock not set.

- Since the lock is not represented in stable storage, it is automaticaﬂy released whenever there is a
- crash. This is harmless because a process cannot resume execution within the monitor after a crash
- (since no saves are permitted there), and the single Put in an update procedure has either happened

~ (in which case the situation is identical to a “erash just after leaving the monitor) or has not
.~ happened (in which case it is identical to a crash just before eatering the monitor).

“The procedures of a stable monitor are examples of atomic actions, i.e. actions Wthh either do or

“do not occur, regardless of crashes. A StablePut is also an atomic action. One of the major
- purposes of our successive abstractions is to make more powerful actions atomic. It is important to
recognize that such actions can only be considered atomic above the level at which they are defined:
- only the crash recovery procedure which is part of the implementation of stable storage makes a
* StablePut atomic, and examining the representation of a stable page thh lower-level operauons
" such as Carc:ﬁdGet mlght reveal partial changes.

* The state of a stable processor, unlike that of a physxcal processor is not entlrely volatlle that is, it
. does not all disappear after a crash. In fact, we go further and adopt a ‘programming style which
allows us to claim that none of its shared state is volatile. We insist that the volatile state of the
- processor must be simply a cache for its stable state, with one exception. A part of the volatile state

- .may differ from the stable state while a process is executing in the monitor which protects that part

of the state. ' As a consequence, the only effect of a crash is to return all the processes to their most
" recently saved states; any state shared between processes is not affected by a crash. Thns fact greatly
simplifies reasomnv about crashes : N R

5.3 Remole procedures ’

Tt is easy to construct proccdure calls from rchable messages and a supply of proccsscs [ref Lauer
. and Needham], by converting each ‘call into 2 call message containing the name of the procedure
and its parameters, and each return into a return message containing .the identity of the caller and
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the result. - When the messages are unreliable, a little more care is needed: a call message must be
resent periodically until a return is received, and duplicate call and return messages must be
suppressed. The program at the end of this section has the details. It is written in Pascal, extended
with monitors and sets of records, and it calls procedures for communications, a real-time clock,
unique identifiers and passing work to idle processes. For simplicity we assume that all remotely
called procedures both accept and return a single value of type Value.

In order to match up calls and returns properly, it is essential to have a source of unique identifiers,
so that each call message and its corresponding return can be unambiguously recognized. For this
purpose stable storage is required, since the identifiers must be unique across ‘crashes of individual
processors. A generator of unique identifiers is easily constructed from a stable monitor whose data
is a suitably large counter. By incrementing the stable value in large units (say 1000), using it as a
base, and keeping intermediate values in a volatile monitor, it is easy to make. the disk traffic
negligible. Many machines have a specialized form of stable storage called a real-time clock which
may also be a suitable source of unique identifiers (if it is sufficiently trustworthy). We want the
‘unique_identifiers generated by a particular processor to be increasing numbers, and prefer that -
-successive ones differ by 1 almost all the time (see below). Note that an identifier unique to a
particular processor can be made globally unique by concatenating it with the processor’s name.

" - A message can be duplicated by the communications, and a eall (with a different identifier) can be

. duplicated as the result of a timeout or of recovery from a crash of the caller’s processor. Duplicate
return messages are suppressed by keeping a list of pending calls, required anyway for recognizing
valid returns.  Duplicate call messages are suppressed by observing that processor p% unique

- .identifiers, which are monotonically increasing, serve as sequence numbers for the call messages,
_ with occasional gaps in the sequence. The receiver keeps track of the largest identifier it has seen
from each processor, and ignores call messages with smaller ones. The same mechanism also

- ensures that when a call is duplicated (by a timeout or crash), the earlier call is executed before the
later one, or not at all. This works because the call message for the later call has a larger identifier.

'When a receiver crashes it of course forgets all this; hence when it hears from a processor for which
it has no record, it must explicitly request that processor’s. current sequence number and discard all
earlier messages. Methods which avoid any such connection protocol, and also make no
assumptions about maximum delays in the network,. do not work as far as we know.

If messages arrive out of order, this algorithm will cause messages which are not duplicates to be
discarded, and performance will suffer; however, by keeping a bit for each of the last k messages
which tells whether it has been received, this problem can be alleviated at the cost of k bits per pair
of communicating processors. In any reasonable system a very modest value of & will suffice. To
preserve the ordering of duplicated calls, the generator of unique identifiers must be advanced by at
. least k during crash recovery and after a timeout. Otherwise a call message my which is generated
- before the crash or timeout and delayed for a long time, might arrive after a later call message my

~ has been processed. If my.id > m,.id - k, my will not be rejected, since it has not been seen before.

The data structures used to implement remote procedures are all volatile (except for the generator
of unique identifiers, discussed earlier). Hencc when a processor crashes, it will subsequently ignore
any return messages from calls outstanding at the time of the crash. Any activations of remote
procedures which it happened to be running at the time of the crash will be forgotten, unless they
" have done Save operations. In the latter case they will complete and send a return message in the
normal way, since all the information needed to do this is in the local state of the process running
the remote procedure. To make remote procedures a reliable tool in the presence of crashes, some
restrictions are needed on the behavior of the procedure being called remotely. These are discussed
in the next section. ' L ey _ - .. . :

We assume from this peint on that communication between processors is done only with the remote
procedure mechanism; Le., there will be no uses of Send and Receive except in the program below.
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{ The fol10wmo program 1mplcmcnts remote proccdurcs It uses .Send and Receive for mcssagcs
AssignWork and GetWork for assigning work to processes, Now for current time, and Umqueld for
unique identifiers. ~ The last lS “also called remotely 1 ’

type Message = record : :
‘ state: (call, return), source, dest: Pracessor td 1D, action: proccdure val: Value end;
type ID = 0. 254 const timeout=.. . ;

{ Code for the onc process which receives messaoes }
var m: Message, repeat Receive(m); I
" if m.state=call and OKtaAccepl(m) then Ass:gnWork(m) lf m.slate—-retum thcn DoRelum(m)

R " until false;

™ | { Code for the processes whlch execute remotely called procedures } ' = N
. var m: Message repeat m: GelWork m.val B m.aclzon(m.val) Sena(m.source, m) untll false; .

F { Make calls’ }

o . monitor RemoteCall = begm

type CallOut = record m: Message cond' Condmon cnd var caIlsOut‘ set of ‘rCaIIOut o= ()

. function DoCalld: Processor, p: procedure, args: Value): Value =
var ¢ t+CallOut; New(c); with ct do with m do begin AR
source = thisMachine; dest := d, action := p; val := args;,

: ,. : . callsOut := callsOut + ¢ { add c to the callsOut set };

- repeat id := UniquelD(); Send(dest, m), Wait(cond, timeour) untxl state= retum, '
callsOut := callsOut - ¢ { remove ¢ from the callsOut set };
-DoCall :=val;, Free(c) end; :

-procedure DoReturn(m: Message) = }
‘ var ¢: +CallOut; ) :
- for ¢in calIsOut do if ct. m.:d—m id then beﬂm ctmi=m; Slgnal(cr.cona) end;

rt cnd RemoteCalI

"{ Suppress duphcate messages. Called only from reccive loop } :
S type C'omzectton = rccord - Processor lastID: ID end var conneclzons‘ set of Connectzon ()

functnon OK toAccepl(m Message) Boolean =
var ¢ 1Connection; with ¢t do with m do begin - ' ' '

if action= UmqueID then return true { duplicates of this call are harmless 3

- for ¢ in connections do if p=source then begin

. if id € lastID then return false; lastID := id, retumn true end
{ No record of this processor. Establish connection }

~ New(c); p := source; lastID := DoCall(source, UniquelD, ml) calIsIn ey calIsIn + ¢
. return false { suppress the ﬁrst message seen } end ~
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5.4 Restartable _'and ' com‘balible “aclions
A p'rOg:z}m statement S (possibly compound) together with predicates P and Q is called a restartable
action if: e ' N ¥ ' ‘ »
P{S}Qie,ifP ‘holds before S is executed, Q holds afterwards;
P holds after any. crash which - occurs during the exccution of S. A _
P is called the precondition and Q the postcondition of S [ref Hoare or somethingi. By 2 partial

execution of S we mean ‘either a complete execution of S, or an execution of part of S which is _

interrupted by a crash. Restartable actions are a useful tool for reasoning about crashes.

A very simple example of a restartable action is the StablePut action, with P=true and Q=(the
page has the new data).. In fact, any atomic action with P=true is restartable. A sequence L of
StablePut actions is also a restartable action, again with P=true and Q=(all the pages have their
new data). This is true because executing some prefix of L, and then executing L, has the same-
effect as executing L. For example, if L is: . » E B :

CCAL A2 A3 A4 AS
then doing the following sequence of actions is eq@ivaient' to ‘doing L:
CAL A2 AL A2, A3, A4 AS. .

By induction, executing any number of different prefixes of L; and then_executing L, still has the .

same effect. - Thus, doing the following sequence of actions is equivalent to doing Lt
AL, A2, A3, Al, A2, A3, A4, Al, Al, A2, A3, A4, AS.

This is an interesting observation, since we pointed out in section 3 that any bomputation- can be _

cast in the form = K- ; ,
o state 1= Fstate) el N r o -

 where F is a function without side effects, - General composition rules for restartable actions are

beyond the scope of this paper. . ' .

‘Consider what happens when theic are several possible actions on some shared data, and through .

concurrency several of these actions are pending. If the shared data is protected by a monitor as
described in section 5.2, then only one of the pending actions will gain access to the data. If there
were no possibility of crashes, then this would be a satisfactory situation; i.e. there will appear to be
. a series of atomic acts on the shared data. On the other hand, a crash may interrupt some partially
-completed action, and after crash recovery a different one of the pending actions may gain access.

* Here is a specific example. Suppose we have some data which represents a set, with two possible

- actions: Erase, which sets the set to empty by removing the elements one at a time; and IsMember.

Suppose that Erase is designed to be interrupted by a crash, and in such a situation it will appear to

have removed some but not all members (hence is restartable). Suppose that we start off with a

- and b in the set; one process P testing @ and b for membership in the set, and another process Q
- calling Erase. ‘The following is a possible sequence of events: i -

Q enters the monitor, and succeeds in removing e from the set.
~ The system crashes and recovers. 2 ! o
P enters the imc'mitor. finds that ¢ is not  a member, and exits the monitor.
P re-enters the monitor, finds that b is a member, and exits the monitor.
Q re-enters and completes the Erase, ‘ ‘ ‘

In this case, there does indeed appear to have been a series of atomic actions on the data: test b

successfully for membership, erase the set, test a unsuccessfully for membership. Unfortunately, P
performed the membership tests in the opposite order. This inconsistency would not happen with

- monitors and without crashes. o v .

f~



CRASH RECOVERY IN A DISTRIBUTED DATA STORAGESYSTEM ~ © T 5

There are two straightforward solutions for this problem. The first is simply to dcsign the clients of
a data structure so that between them they never have more than one pending action on the data.
This would lcad to little concurrency, and may actually be impossible to guarantce. Thus, we would
- prefer to avoid this solution. A sccond solution is to store the monitor lock in stable storage. After
a crash, we can discover which process was in the monitor and arrange that at the point of recovery
that process re-enters the monitor. Monitor entry and exit would now involve disk activity, which
- would -make monitors quite expensive. : . : 3 &

Shared data ’which‘_spans more '.tha'n one machine presents additional problems. It is pdésible to
“protect this data by a monitor, if the lock is kept on some one machine, and in its stable storage.

- However, this now makes monitors even more inefficient than in the single machine case, since the

one machine will tend to be a bottleneck. . -

As a way out of these difficultiles, we introduce compatible actions. Compatible actions will provide
fewer guarantees than those provided by monitor actions without crashes, but the guarantees will be
useful and obtainable in the presence of crashes and without monitor locks in stable storage. .
- Consider the history of some shared data. Thére will be periods during which one or more actions
are in progress or pending (if there is a monitor lock). There will also be idle periods when no

 “action is in progress or pending. Call the collection of actions which occur between two idle

periods a jumble; it includes the actions which are repeated because of timeouts or crash recovery.
Note that pairs of actions may be in the same jumble without occurring simultaneously. We now
say that the actions on a shared set of data are compatible if at the end of each jumble, however
executed with intervening crashes, it appears that the individual actions had been executed one at a
time in some order. We do not require that this order appear the same to a calling process
(consider the example above). Clearly, compatible actions must be restartable. (consider the
collections consisting of each action by itself). Furthermore, restartable atomic actions on a stable
monitor are compatible. As a rcfinement, if we can restrict the behavior of clients by partitioning
-the set of actions so that all actions in any actual jumble come from the same partition, then we
- need only require compatibility among the actions in each partition.

.
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6. Stable sets and combound actions . -

Based on stable storage, stable. processors, and remote compatible actions, we can construct two
more complex objects, from which it is then straightforward to build atomic transactions. The base
cstablished in the previous scction ‘has the following elements: _ 2 i . !
" stable storage, with an ideal atomic write operation (StablePui) for data blocks of a few
~hundred bytes; - e g el

+ . stable monitors protecting data in stable storage, provided all the data is on a single
~processor, and the update operations _involve only a single Pus; I

In this system ‘the existence ‘of Separate processors is logically invisible, However, we want our
-algorithms to have costs which depend only on the amount and distribution of the data being
accessed, and not on the total size of the system. This means that interrogating every processor in
the system must be ruled out, for example. Also, the cost of recovering from a crash of one
processor must not depend on the number of processors in the system. Rather, it should be fixed,

or at most be proportional to the number of processes affected, ie., the processes running on the - .
processor which crashes. Finally, it should be possible to distribute the work of processing a
number of transactions evenly over all the processors, without requiring any single processor to be
involved in all transactions. - . s e, o . T il

In order to handle arbitrarily large transactions, we need arbitrarily large stable storage objects,
construct these things.

61 Swble sas Er b, | N

between a Create and the next Ergse A stable set has the following atomic operations:
' - Create(i: ID) creates a stable set named by i If such a set already exists, it does nothing.

' ] Inser(s, t: StableSet, new: Record) inserts new into both sets; one might be nil. Juser into
n sets for any fixed n would also be possible, but is not needed for our application.

Overwrite(s, t. StableSet, old, new. Record) requires that old was inserted into sand tby a .
* single Insert or a previous Overwrite. 1t removes old from s and ¢ and inserts new into s

IsEmpty(s: StableSef) returns true if s is empty, false ‘otherwise. :
_ IsMember(s: StableSet, r: ‘Record) returns true if r is in s, false otherwise.
There are also two non-atomic ‘operations: o - '

Enumerate(s: StableSet, p: procedure) calls p with each element of s in turn, We '_'will write
- such operations in the form for r in sdo ... for readability. ww

Erase(s: StableSer) which enumerates the elements of s and removes each one from s and
the other set it is in. If s does not exist, Erase does nothing. i

These opérations have all the obvious properties of set operations. Since Enumerate and Erase are
not atomic, we specify them more carefully: Enumerate will produce at lcast all the items Inserted
before the enumeration starts, if no E'rase has been done; it will not produce any items which have

not been Inserted by the time it is over.

P



CRASH REECOVERY IN A DISTRIBUTED DATA STORAGESYSTEM ’ R

If one ‘of the atomic operations, say 4, is donc while one of the non-atomic oncs, say N, is in
- progress, A may behave as though it had been done before N started, or after N completed. Each
A done while N is in progress makes this choice independently; thus a process doing first A1 and
then 4, may find that 4, behaves as though N is complete, and 4, behaves as though N has not
started Even if N fdl]S to complete (because of a crash); 4 may bchave as though N had
completed; e.g., if Erase has removed an element, IsMember will rcport that it is gone even though
_other elements of the set may not yet ha»e been erased. .

In spite of these comphcatxons all the actions on a stable set are compatlble The reason for the

. complications is that tighter synchronization is not needed for our purposes and is tricky to provide.

- - Sensible users of this abstraction will refram from starting atomlc Operatnons whxle non-atomic ones -
_,aremprogress P el o .‘ e, n 2oale .

We have two 1mplementatlons for stable sets. 'Ihe first is desngned to work efﬁcnently on a smglc

" processor, and is extremcly simple. We permanently allocate a set of pages in stable storage, with

known addresses, to represent stable sets; these pages are called the paol On each page we store an
item of the following type: o .

type Ilem = record case lag: (empty, eIement) of B T Rt
gy 0 Cempy: el e R -
ek eIemenl‘ (s, L ID Recora) end | T R

The pages of the pool are mmahzed to emply The elements of a set 5§ are those values r fog'
which there exists a representing page in the pool, i.e., one containing an element item i with Lr=rr
 and (is=ss or it=ss). To do Inseri(ss, 1, rr) we find an emply page and write into it the item
- (tag=element, s=ss, t=t1, r=rr). To do IsEmpty, IsMember and Enumerate we search for all the
- relevant representing pages. To do Overwrite(ss, U1, oo, nn) we find the page representing (ss, 1, 00)
~.and overwrite it with (ss &, nn). Note that Insert and Overwrzte are atomic, as claimed above, since
each mvolvcs just one Put o

A practlcal 1mplementat10n maintains a more efficient rcpresentatlon of the sets in volatlle storage

and reconstructs this representation after a crash by reading all the pages in the pool. To make

. better use of stable storage, it also orders the pages of the | pool in a ring, stores several items in
' . each page, implements the Erase operation by writing an erased item rather than removing cach
. item of the set, and recovers the space for the elements of erased sets as it cycles around the ring. -
- The details of all thxs do not require any new ideas. ' . =

" The unhty of thc pool nnplementatxon is lxmxted by the need to read all the pages in the pool after
a crash. We do not want to read all the pages of all the pools in the system when one processor
..crashes. Therefore a wide stable set, which spans more than one processor, requires a different
approach. We assume that the value of a record determines the processor on which it should be
stored (for both sets into which it is inserted), and that the unique identifier of the set determines a
processor called the roof processor of the set. The idea is to have a stable set called a Jeafon each
processor, and to use another stable set, called the roof and stored on the root processor, to keep
track of all the processors involved. All these sets can be implemented in pools. Each record

- stored in the root contains only a processor name; the records in the leaves contain the elements of :

’, the wide set. . Operations involving a -single record are directed to its processor, and are :
implemented in the obvious way. IsFmpty Erase and Enumerate are dlrected to the root, whxch. o
-~ uses the corrcspondmg operatmn of each leaf set in tum. ; o

“The only tncky pomt is to ensure that elements are not added to a leaf‘ untxl its processor is
registered in the root set. To accomplish this, the Insert operations check whether the leaf set is
empty, and if so they first call the root set's Insert to add the leaf processor. As a conscquence,
Insert is no longer an atomic opcration within the tmplementanon but since extra entries in the
root set arc not visible to the user of the wide set, it is still atomic at that level

-
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6.2 Compound atomic actions

We nced to be able to take a complex action, requiring many atomic steps, and make the entire
action atomic, i.e. ensure that it will be carried out completely once it has been started. If the
- action R is compatible and is invoked from a processor which never crashes, then this goal will be
met, because the invoking processor will kecp timing out and restarting R until it is finally
completed. Thus, for example, if we assume that the client of our data storage system never
crashes, then the remote compatible actions of section 5.4 are sufficient to provide atomic
transactions. Since we do not want to assume that any processor never crashes, least of all the
- client’s, something more is needed. ' : e . : S
- . N . | L. . i
In fact, what is needed is simply a simulation of a processor with a single process which never
crashes, and our stable processors already provide such a thing. Consider the following procedure,
. to be executed by a stable process: | T P ' -

~procedure A = begin Save; R; e

If R is a compatible action, then 4 is an atomic compatible action. This is clear from a case
analysis. If it crashes before the Save, nothing has been done. If it crashes after the Rese, R has
been done completely and will not be done again because the saved state has been erased. If it
crashes between the Save and the Rese, it will resume after the Save and restart R. The resulting
execution sequence is equivalent to a single execution of R, by the definition of a restartable action.
If other compatible actions on the same data are going on at the same time, the result is equivalent

:to a single execution of R together with those other actions, by the definition of compatibility.
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7. . Trans.rctrons

In thrs section we prcsent algorrthms for the atomic transactions drscussed in section 3 The central
tdca behind them is that a transaction is made atomic by performing it in two phases:

First, record the information necessary to do the writes in a sct of infentions, without
changing the data stored by the system. 'I'he last acuon taken in this phase is said to
. commit the transaction. ‘ i

Second, do the wntes, actually chancrmg the stored data. |

.If a crash occurs after the transaction is committed but before all the chanoes to stored data have
been done, the second phase is restarted. This restart happens as many times as necessary tp make
, %:t a}l the changes madc. Any algomhm which works in this way is called a lwo-phase camrmt [ref
. Gray : ‘ . - : : ! (e % D 2 2!

. -To preserve the atomrc property. the wntmg of the mtentrons set must rtselt‘ be atomic. More

- precisely, consider the change from a state in which it is still possible to abort the transaction (i.e.

- none of the changes have been recorded in the files in such a way that they can be seen by any
other transaction), to onc in which aborting is no longer possible, and hence crash recovery must
complete the transaction. This change is the point at which the transaction is committed. It must

" be atomic, and hence must be the result of a single Puf action. The intentions set may be of

~arbitrary size, but it must be represented in such a way that its existence has no effect on the file

.+ data until this final Put has been done. In addition, care must be taken that the mtentrons are '
properly cleaned up after “the transaction has been committed or aborted.

_ This rdea is rmplemented usmg stable sets and compound atomic actions. The mtenttons are
- recorded in a stable set, and the locks needed to make concurrent transactions atomic are recorded
in another stable set. The complex operation of committing the transaction (including carrying out

-the writes) is made into a compound atomic action. To complete the argument, we must show that
-the varrous operatxons are compatrble. ! :

. 'We present a!gorrthms for the following procedures to be called by cIrentS' Begm, Read, Wnte, End :
_and Abort. The client is expected to cqll Begm on one of the servers, which we call the coordinator
- for the transaction. Begm returns a transaction identifier. The client then calls Read and Write any

number of times on various servers, directing each call to the server holding the file pages addressed

. by the call. These calls may be done from separate processes within the client. When all the

~client’s Write calls have returned, he calls either End or Abort on the coordinator.

*If the client fails to wait for all his Writes to return, no harm will be done to the file servers, but
their resulting behavior may not be that intended by the client. Each of the actions is designed to
". be atomic and restartable; thus even in the presence of server crashes, lost messages and crashed
-clients they are either fully performed or not performed at all. However, if the “client does not
repeat each Write call until it returns, he will be unable to determine which Writes actually
occurred. Similarly, if he calls End before all Writes have returned, he can not be sure which of the
' outstandmg ones will be included in the transactron ,

We use the fo!lowmo data structures: : :
" . A [transaction identifier (TD is simply a unique rdentrﬁer

"~ An Intention is a record containing
i talTL ' s
p: a page address P4 = rccord file rdentlﬂcr paoc number in ﬁle end;
a. an action RW = (read, wrile);
d: data to be written. 1
, Actuaily t and p are identifiers for the stable sets in whrch an Jutention is recorded we
shall ignore this distinction to keep the programs shorter.

A transaction flag (TI’) is a record contammg , | o
l.aTI;- : L ‘ " -, =

. _f'.'«
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pg: thac':): phase of the transaction, Phase = (nonexistent, running, commilted,
fa orled). .

On each of the server machines we maintain sets contalnmg these objects, and stable monitors
protecting these sets, as follows:
For each file page p, at the server holdmg the ﬁle page,
a stable set p.locks (whose elements are Intentions which are mterprctcd as Iocks)
a stable monitor -protecting this set. '
For cach transaction f, at the coordinator for the transaction,

a root for a wide stable set tintentions (containing Intentions which are mterpreted
- as data which will be written when the transaction ends). - A leaf of this set will

~ exist on each server on whxch a file page i is wntten or read under this transactxon..

At each server s, - .

a stable set s.ﬂags (contammo transacuon ﬂaas)
a stable momtor protecting this set. -

We ﬁrst introduce two entry procedures on the set of transacnon ﬂaUS' these are not accessxble to |
the cllem:' ' - o ! . :

entry procedure SetPhase(t' TI deszredPhase' Phase {not nanextstent}) begin
"~ case GetPhase(f) of : L
commiltted, aborted: {do nothmO}

‘running: overwrite with <z, deszredPhase)'

" nonexistent: if deszredPhase rwmmg then insert <z rmmmg) in flags {else not.hmO}
- endcase; E A i ’ ) _

" entry function GetPhase(t TI) phase = begln ‘
: if <t phase> € ﬂags then return phase else retum nanexzslenl end.

The SetPhase prOcedure is an atomlc restartable action. It is desngned so that the phase of a
transaction will go through three steps: nonexistent, running, and then either committed or aborted.
-‘Moreover, only setting it to running can remove it from the nonexistent phase, and it will change
“from running to either aborted or ‘committed cxactly once. _

“Now we introduce the five client callable procedures Two are entry procedures of the stable
monitor for a page. Each should return an error if the page is not stored on this server, but this -
- detail 1s suppressed in the code.

.- entry function Read(l TI, p: PA) Data =
var noConflict: Boolean‘ begin ‘
repeat noConﬂzct -true; o il
s for i in pIocks do if it and ia=write then noCondzc _ false
until’ noConflict; -
-_Insert(p locks, t.mtentrons, <read niD); retum StabIeG'el(p) end

'entry procedure Wnle(t‘ TI, p: P4, o Data) =
- var noConflict: Boolean‘ var d’ begin
repeat noConflict :=. true; d’ := d,
for i in plocks do
if it=t then noConflict := false
, else if ia *-wrzle then d := id
untrl noConflict;
if d'=d then Orenvnte(p Iocks. t.mlenlzons, (wrrte d’) Swrite, d>)
else Inserd(p.locks, Lintentions, <write, &) end;

The other three, which control the start and end of the transaction, are not monitor entry
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procedurcs.  ‘The - Lnd and Abort proccdurcs which complctc a transaction do so by calling an
internal proccdure Complete.

'proccdure Begin(): TI =

const ¢t = UniquelD(); begm SetPhase(t, mnnmg) CreateWzdeSlableSeI(t) rctum tend; -

function End(t: TID): Phase = return Complele(t commiltted)
" function Abort(t TI) Phase = return Complete(t, aborted) | _
-~ function Complete(t TI, deszredResuIt. Phase {committed or- aborled only}) Phase ==' begin

if GelPhase(t)*nonexzslent then return nonexistent;
~ Save {process state}; SetPhase(t, desiredResulf);
{now the transaction is committed or aborted}
if GetPhase(l) commitled then . N
. ' for i in tLintentions do if iLa=write then StablePuz(x.p, id);
.-+ - Erasé«tintentions) {also erases all corresponding entrxes in all plocks}
T | Reset {process state}; retum ‘GetPhase{t) end _

" A transaction will terminate either through an End or an Abort. Both of these commands may be
... running simultaneously, either because of a confused client, or because Abort is being locally
" generated by a server at the same time as a client calls End. Moreover, the remote procedure call
- mechanism can result in several instances of either End or Abort in simultancous execution. In any
_case, the phase will change to either aborted or committed and remain with that value; which of . -

these occurs determ_mcs the outcome of the transacuon 'I‘hus 1t is phase which makes Aborl and

. End compatible. .

We makc four claxms

- (1) If phase changes from running to cammuted then all Wma commands completed before
End was first entered will be reflected in the file data.
(2 The only changes . to file data will be as a result of Write commands dlrected to this
transaction. :
(3) If phase changes from running to aborted then no Write commands w‘ll be reflected.
" (4) After the first End or Abort completes, the wide stable set for ¢ will have been erased and
wnll remain erased and empty.

.Claim 4 follows from the fact that both End and Abort eventually call Erase(t) Thus the set wxll

have been erased. The set can not be recreated because the only call on set creation is in the Begin

~action, and each time Begin is called it will use a new unique id. Claim 3 follows from the fact that
. the only writes to file data pages occur in the End procedure; these writes will not occur if the End

procedure discovers that phase has been set to aborted, finally, once phase has been set to aborted,
it will remain set to aborted. Claxm 2 follows from the fact that only Wrzte can add mtentxons with

a=write to £ - A a2 _ -

Claim 1 follows from several facts. The fundamental one is that the body of E'nd (fonowmg the
Save and up to the Resel) is a restartable action. This action has two possible outcomes, depending

" on the value of phase after the SetPhase. If phasecommitted, then the restartable action does
- nothing. If phase=committed, then it remains so forever, and End will embark on some uscful

work. Thls work will include StablePut(i.p, i.d) for any write intention 7 enumerated from set £. Any

- Write(t, p, d) command completed before End was called will have made such an entry in £, and the
- enumeration will produce it. All such entries will be produced because there will be no call on
Erase(f) until at least one enumeration has completed without interruption fromy crashes.

EN

g
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8. Relincments

Many refinements to the algorithms of the last three sections can be made. A few have been
pointed out already, and a number of others are collected in this section. Most of them are
incorporated in a running system which embodies the ideas of this paper [ref Israel et all.

8.1 File representation

A file can conveniently be represented by a page containing an index array of pointers to data
pages, which in turn contain the bytes (or the obvious tree which generalizes this structure)., With
this representation, we can record and carry out intentions without having to write all the data into
the intentions set, read it out, and finally write it into the file. Instead, when doing a Writep, d) we
~ allocate a new stable page, write d into it, ‘and record the address of the new page in the intention.
- Then only these addresses need to be copied into the index when camrying out the intentions. This
scheme allows us to handle the data only once, just as in a system without atomic transactions. It

“does have one drawback: if pages are updated randomly in a large file, any physical contiguity of

the file pages will soon be lost.  As a result, sequential access will be slower, and the space

required to store the index will increase, since it will not be possible to compress its contents.

82 Ordering of actié_ns .

Itis éasy to See that thé seduential _fdr loop in End c'ar;'bé' done iri;p'araﬂél, since all the data on
‘which it operates is disjoint. X Exa C _ gL

A more interesting observation is that the writing of intentions into the ¢ and p sets can be
postponed until just before End is called. In this way it is likely that all the intentions can be
written in a single StablePut, even for a fairly large transaction. The effect of this optimization is
_ that the client’s Write calls will not return until just before the End, a new procedure,, say
GetReady, would have to be added so that the client can inform the servers that he wants responses
to his Writes. We can carry this idea one step further, and move the GetReady call from the client
to the coordinator, which does it as part of End before committing the transaction. For this to
work, the client must tell the coordinator what responses to Writes he is cxpecting (e.g., by giving
the unique identifiers of the calls) so that the coordinator can assume responsibility for checking
that the responses are in fact received. In addition, the other servers must return their Write
responses to the coordinator in response to his GetReady, rather than to the client.
- A consequence of this scheme is that a crash of any server s is likely to force transactions in
progress involving s to be aborted, since the intentions held in volatile storage at s will be lost, and
. the client is no longer repeating his Write calls until he gets the return which indicates that the
intentions have been recorded in stable storage. If crashes are not too frequent this is not
objectionable, since deadlocks will cause occasional transaction aborts in any case.

A more attractive consequence is that write locks will not be set until just before the Emz’,’mus
reducing the interval during which data cannot be read by other transactions [ref Gifford]. In order
to avoid undue increases in the number of transactions aborted for deadlock, it may be necessary to

resort to an "intending to write” lock which delays other transactions also intending to write, -

without affecting readers. These .intricacies are beyond the scope of this paper.

83 Aborts

In a practical system it is necessary to time out and automatically abort transactions which run too
long (usually because the client has crashed) or which deadlock. The latter case can be detected by
some explicit mechanism which examines the locks, or it can be inferred from a timeout. In any
case, these automatic aborts add no logical complexity to the scheme described in scction 7, which is
already .prepared to receive an Abort from the client at any time.

N T
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When a dcadlock occurs bccausc of a confhct between read and write locks a less drastic action
than aborting the transaction holding the read lock is possible, namely to snmply notify the client -
that it was necessary to break his rcad locks. He then can choose to abort the transaction, rercad
the data, or decide that he docsn’t really care. It is necessary to requirc that the clicnt explicitly
-approve cach broken read lock before committing the transaction, The 1mpl|canons of this scheme
are dxscussed in more detail elsewhere [ref lsrac] Gifford].

84 Redundancy of lhe index b T=b '. i g .

Since the index which maps file addresses into disk addresses is frequenﬂy written, it would be nice
- to avoid the two writes required by straightforwardly implementing it in stable storage. If each data’

page records. its file address, then the index can be reconstructed from the data pages (by scanning
the disk), and it will not be necessary to storc it redundantly. Some care must be taken, however,

o wnh the mteractlon betwecn this idea and the idea of recording mtennons as changes to the index.” -

“The drfﬁculty is that with this latter scheme, a Write for an uncommitted transaction has alrcady

N ~.» constructed a final version of the new data page, indistinguishable from the old version from the

- -point of view of a disk scan which is trying to rebuild a lost index. We cannot solve this problem
by modifying the new data page after committing the transaction, since such a modification requires
precisely the disk write we are trying to avoid. Instead, we must use the intentions to sort things
*out when the scan finds two contenders p; and p, for the role of page p. If we make the rule that

" the old page is erased before the intention for the new page is erased, and we can tell that Py was
written -after p;, then:we can distinguish the following cases: _
No~ mtentron is recorded: there must have been a crash between wntmg p2 and the
_intention.  Erase p, and put py in the index.
There is an intention “pi=p,": put p, in the index; if the mtermon is commrtted, it wm
: eventually’ be carried out and will replace p; with p,. : _
The necessary ordenng of the pages can be obtained by writing a sequence number sn-into the

~"header, or in a variety of other ways. Two bits of sequence number are sufficient if interpreted as
. an integer mod 4, which is incremented by 1 for each new page; p, follows p; iff-p,.sn-pj.sn=1

mod 4, and vice versa; exactly one of these conditions must hold. This form of sequence number
has the drawback that it is necessary to know p;.sn before writing p,. Using Umque]D mstead

requrres more bxts in the header but does not have thls drawback.

85 Convemence fealures

CItis straxghtforward to made Read and Wnte work on arbm'ary sequences of bytes rather than on
‘pages, and to do thier locking to the nearest byte. Some care must be taken with the data

- structures for the locks, however since it is not practical to make a lock record for each byte, and

- hence locks must now be recorded on ranges of bytes. : .o

It is also easy to_modify Read so than a transacnon can read back the data it has written, rather
than seeing the old data as in the program of secuon 7. Of course, other transactions will sull have
to wait, or see the old data as dlscussed in section 8. 2
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Conclusions

We have defined a facility (transactions) which clients can use to perform complex updates to
distributed data in a manner which maintains consistency in the presence of system crashes and
concurrency. QOur algorithm for implementing transactions requircs only a small amount of
communication among scrvers. This communication is proportional to the number of scrvers
involved in a transaction, rather than the size of the update. We have described the algorithm
through a series of abstractions, together with informal correctness arguments, :
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