
30 November 2006 ACM QUEUE rants: feedback@acmqueue.com

ERIC ALLMAN, SENDMAIL

ACM QUEUE November 2006 31 more queue: www.acmqueue.com ?

CybercrimeFO
CU

S

I
nternet e-mail was conceived in a different world
than we live in today. It was a small, tightly knit
community, and we didn’t really have to worry too
much about miscreants. Generally, if someone did
something wrong, the problem could be dealt with

through social means; “shunning” is very effective in
small communities.

Perhaps we should have figured out what was going to
happen when Usenet started to go bad. Usenet (aka Net-
news) was based on an inexpensive network called UUCP
(quaintly standing for Unix to Unix copy program),
which was fairly easy to join, so it gave us a taste of what
happens when the community becomes larger and more
distributed—and harder to manage. Even the worst flame
wars seemed fairly innocuous in the grand scheme of
things, and kill files were really enough, but there was a
seed of something ominous that was going to germinate
all too soon.

Although the Internet went live in 1983, the real
explosion occurred in the early 1990s, when the number
of Internet hosts grew from under 100,000 in 1989 to
around 5 million by the middle of the decade,1 rising to
nearly 40 million by early 1998. That was the year that
Hotmail (launched in mid-1996) was sold to Microsoft for
a reported $400 million,2 with around 30 million users.3
Coincidentally, the latest surveys indicate about 400
million Internet hosts as of the beginning of 2006,4 and
Microsoft claims 261 million Hotmail accounts as of June
30, 2006.5 A lot of people have discovered the Internet,

E-mail Authentication
what,

how
why,

32 November 2006 ACM QUEUE rants: feedback@acmqueue.com

including a lot of consumers. Of course, businesses follow
consumers, so much so that URLs are ubiquitous today
on everything from the sides of buses to water bottles
to toothpaste tubes. Businesses call consumers “custom-
ers,” and they generally try to extract money from them,
which brought money into the picture. And money
attracts miscreants: everyone from small-time hustlers to
organized crime members.

There are really two major communication technolo-
gies on the Internet today: the Web (a pull technology),
and e-mail (a push technology). There are many others,
of course, such as pub/sub services, IM, VoIP, etc., but
today these two remain the granddaddies of the technol-
ogy. In theory pull technologies should be more secure,
since the user has to go out of his or her way to access the
site, but in fact that is no more than a tiny speed-bump
on the information superhighway. That’s not the theme
of this article, however.

E-mail has had a fundamental flaw from the begin-
ning: a lack of authentication. This means that anyone
on the Internet can, in theory, send e-mail to anyone else
while claiming to be a third person. The reason for this
is purely historic: E-mail was one of the very first net-
work protocols—in fact, the first three application layer
protocols published for the Internet were telnet, FTP,
and SMTP6—even before DNS, and before there was any
infrastructure to support distributed authentication in the
nascent Internet (telnet and FTP used local authentica-
tion). Coupled with greed, this is a dangerous property.
For example, I have no way to prove that a message that
claims to be from my bank actually has anything to do
with my bank. This situation is increasingly untenable,
which is resulting in calls for authentication technology.

With literally hundreds of millions of mail clients and
servers out there, updating the mail protocols cannot be
done lightly. A change that would break existing mail cli-
ents or servers would be disastrous. Such a change would
also take a long time. We made a major change in SMTP
in 1993 to support extensions such as eight-bit data and
encryption (ESMTP, RFC 1425, later updated), and there
are still a few servers that have not been updated well
over a decade later. We should expect a similar adoption
cycle for authentication and plan for a system that can
be deployed over a long period without breaking existing
servers and creating “walled gardens” that can talk only

among themselves (that is, systems with authentication
must interoperate with older systems).

Another issue is that we still don’t have a globally
accepted distributed authentication infrastructure. Many
proposals have been put forth, but none has become
ubiquitous. There are proposals for e-mail authentication,
however, that avoid this need.

CURRENT PROPOSALS
Authentication proposals come in two flavors: path-based
and signature-based. There are many variations on this
theme.

Path-based algorithms look at where the mail was sent
from. For example, if I receive an e-mail from a site claim-
ing to be mybank.com, I want to see if the client sending
the mail is actually owned by MyBank. I can determine
this by asking mybank.com what hosts send mail on its
behalf. Since I’m going to the real mybank.com to get
the information, I should be able to trust that data. If the
message comes from an address that MyBank does not
send mail from, then the message is probably suspect.

This gets a bit complex, however, because of the way
business is done today. For example, MyBank might
well hire a company to send e-mail on its behalf, using
a MyBank e-mail address as the sender. This is common
for marketing, human resources (e.g., payroll, benefits),
front-line support, CRM, etc. This can be dealt with,
albeit painfully.

The real difficulty is that the Internet e-mail model
allows messages to be forwarded. For example, profes-
sional and alumni organizations commonly have e-mail
forwarding services that let you have a single address that
does not change even when you change jobs or ISPs. I
might have a forwarding address at alumni.myuniver-
sity.edu that sends the message to my ISP, allowing me
to move from one provider to another without having
to change my e-mail address. Thus, when I receive the
message, it is going to seem to come from my forward-
ing service, regardless of who actually sent it. In some
cases these problems can be dealt with, but not without
difficulty.

The best-known examples of path-based authentica-
tion are SPF (Sender Policy Framework) and Sender ID.

Signature-based algorithms, on the other hand,
determine whether the message is legitimate by using a
cryptographic digital signature on the message. Public-key
encryption allows the signer (usually the sender of the
message) to publish its public key so that the verifier (usu-
ally the recipient) can verify that the message is properly
signed. For example, if I get a message that claims to be

CybercrimeFO
CU

S
E-mail Authentication

what, why, how?

ACM QUEUE November 2006 33 more queue: www.acmqueue.com

signed by MyBank, I can ask mybank.com for its public
key and then use that key to verify that the signer really
was MyBank and not someone else spoofing the message.

The third-party (outsourcing) problem can be handled
in several ways; the simplest way is to give the outsourcer
a key that it can use to sign on behalf of the claimed
signer. Of course, this needs to be protected so that the
key can’t be used to sign a message claiming to be from
the CEO, but this is relatively easy as well. There is no
problem with forwarding messages, as long as the for-
warder doesn’t modify the message in the process (which
would break the signature). The biggest problem is likely
to be with mailing lists that do modify the message (for
example, by adding unsubscribe information); such list
management software has to be updated.

The best-known examples of signature-based algo-
rithms are DomainKeys from Yahoo! and DKIM (Domain-
Keys Identified Mail), the result of a group effort that
started with DomainKeys and IIM (Identified Internet
Mail) from Cisco. These are similar algorithms, but they
do have distinct differences.

SO WHICH ONE IS BEST FOR ME?
Naturally, there are trade-offs among these various tech-
nologies. Path-based systems are very simple for senders:
They just install a new record into DNS. Receivers have to
install some new software, so it’s a little harder for them.
In contrast, signature-based systems require software at
both ends, but they aren’t confused by message forward-
ing and are somewhat more flexible for senders. For
example, if one site hosts more than one domain (that is,
two or more domains can send from the same IP address),
then any of those domains can masquerade as any of the
other domains in path-based systems. In signature-based
systems each can have its own key.

Many sites are already using both schemes and open
source implementations of all the options. The most
widely deployed is sender-side Sender ID/SPF, probably
owing to the simplicity of creating the record (unfortu-
nately, it’s nearly impossible to determine how many
sites are checking this information). Signature-based
algorithms, however, are already being used by many big
hitters, including ISPs and large enterprises, and they are
supported by most providers of anti-spam technologies.

For the best protection you should probably use at
least one of each type of system. Sender ID and SPF are
close enough that you don’t have to choose between
them. At the moment, DomainKeys is more broadly
implemented than DKIM, but in the longer term DKIM
is likely to be preferred because of additional functional-

ity and security as well as the expectation that it will be
an official Internet standard. DomainKeys and DKIM can
coexist, so it’s quite feasible to install both of them at the
same time.

WHAT ABOUT S/MIME OR PGP?
Some of you may be wondering why we aren’t just using
S/MIME (secure MIME) or PGP (Pretty Good Privacy),
existing e-mail security technologies that provide encryp-
tion and signing. The simple answer is that they do the
wrong thing for our needs. This is not to say they aren’t
valuable; they are, and they should be more broadly
deployed. Both of them, however, are victims of the key-
management problem, and both are intended for user-to-
user rather than server-to-server use, which limits their
use for server-level filtering.

Key management comes from the way that the verifier
ensures that it has the correct public key for the signer.
Schemes such as DKIM just ask the signer for its key using
DNS, very similar to the way they ask a domain for its IP
address when sending mail. S/MIME and PGP, however,
both use schemes where another entity vouches for the
key by having that third party sign that key. Of course,
to verify that signature, the key of the signer needs to
be signed. S/MIME uses these key signatures to arrange
all the keys into a tree (really several trees); the roots
of those trees are well-known (and carefully guarded)
entities, usually companies, called certificate authorities.
The verifier (such as your Web browser) has a list of well-
known certificate authorities built in, which is how secure
Web sites prove who they are. PGP uses a “web of trust”:
anyone can sign anyone else’s key, and you follow your
way through that web until you find someone you trust.
Hierarchical structures are not required, and certificate
authorities are not necessary.

Asking everyone who wants to send mail to get a
signed key is difficult (and probably expensive); systems
such as DKIM allow anyone to create his or her own key
and publish it without going to a third party.

Another reason not to use S/MIME or PGP is that it
changes the body of the message in a way that is likely to
be visible to the message reader, particularly if the reader
isn’t using the same authentication scheme. One of the
goals of DKIM was that receivers that didn’t implement
DKIM wouldn’t see any change in what is displayed to
the end user.

WHAT NEXT?
One of the classic misconceptions is that authenticated
messages can be trusted. By the very nature of authentica-

34 November 2006 ACM QUEUE rants: feedback@acmqueue.com

tion, spammers and phishers can authenticate themselves
as well as legitimate senders can. Once you know who
someone really is, you also need to know whether this is
someone from whom you want to accept mail. The major
schemes for this are accreditation and reputation.

Accreditation is based on third parties that audit
senders to ensure that they follow good practices (such as
using only double-opt-in lists and immediately honoring
all unsubscribe requests). The accreditor then makes it
publicly known that the sender is legitimate. Generally,
accreditors will then monitor the behavior of the senders
to verify that they are following the approved practices.
Accreditors must themselves be held in high regard, so
they have a strong incentive to make sure that the people
they accredit obey the rules.

Reputation generally also involves third parties that
monitor how e-mail senders behave. This monitoring
can in most cases be done without the cooperation of the
various senders on the network. For example, they set up
honey pots to attract spam, monitor abuse complaints,
and collect community feedback. Sites that are known
to send a lot of spam get poor reputations, whereas sites
that send a lot of e-mail but have few complaints get
good reputations. They can then publish this information
to receivers. Large sites, especially large ISPs, can collect
this information internally and make exceptionally good
decisions. Smaller sites will probably have to subscribe to
a service that amalgamates data.

There are also more immediate ways to use authentica-
tion data. For example, as defined, none of these schemes
specifies a way that an end user will see authentication
information. An e-mail provider might want to warn me,
however, if I receive a message that claims to be from
MyBank but is actually from elsewhere. This alone would
give the phishers a serious case of heartburn. Users could
have their own personal allow-lists, probably automati-
cally generated by scanning their address books and
monitoring whom they communicate with.

Using authentication information effectively will be
the next big challenge. It will impact e-mail systems on
many levels: clients, servers, and additional tools. Some
early work is available on this topic, with more to come.

E-mail authentication is definitely coming, and, in
fact, is arguably already here. The next big step is figuring
out how best to use that information. Authentication also

enables a whole new class of anti-spam and anti-phishing
algorithms. There is still much to learn. Q

REFERENCES
1. Salus, P. H. 1995. Casting the Net. Boston: Addison-Wes-

ley Professional.
2. Pelline, J. 1998. Microsoft buys Hotmail. CNET News.

com; http://news.com.com/2100-1033-206717.html.
3. Microsoft. 1999. MSN Hotmail: From zero to 30 million

members in 30 months; http://www.microsoft.com/
presspass/features/1999/02-08hotmail.mspx.

4. Internet Systems Consortium. ISC Internet Domain
Survey; http://www.isc.org/index.pl?/ops/ds/.

5. Microsoft. 2006. Microsoft reports fourth quarter
results and announces share repurchase program;
http://www.microsoft.com/msft/earnings/FY06/earn_
rel_q4_06.mspx.

6. Defense Communications Agency. 1985. DDN Protocol
Handbook, Volume 1, DOD Military Standard Protocols.
NIC 50004 (December).

MORE INFORMATION
http://dkim.org
http://antispam/yahoo.com/domainkeys
http://openspf.org
http://microsoft.com/senderid

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ERIC ALLMAN is the cofounder and chief science officer
of Sendmail, one of the first open source-based companies.
He was previously the lead programmer on the Mammoth
Project at the University of California at Berkeley. This was
his second incarnation at Berkeley, as he was the chief
programmer on the INGRES database management project.
In addition to his assigned tasks, he got involved with the
early Unix effort at Berkeley. His first experiences with Unix
were with 4th Edition. Over the years, he wrote a number of
utilities that appeared with various releases of BSD, including
the -me macros, tset, trek, syslog, vacation, and, of course,
sendmail. He spent the years between the two Berkeley
incarnations at Britton Lee (later Sharebase) doing database
user and application interfaces, and at the International
Computer Science Institute, contributing to the Ring Array
Processor project for neural-net-based speech recognition.
He also coauthored the “C Advisor” column for Unix Review
for several years. He was a member of the board of directors
of Usenix Association.
© 2006 ACM 1542-7730/06/1100 $5.00

CybercrimeFO
CU

S
E-mail Authentication

what, why, how?

