
Interprocess Communication

Look at Unix primitives. Also covered in Tanenbaum chapter on Unix.

How does one process communicate with another process?

• semaphores — signal notifies waiting process

• message passing — processes send and receive messages.

• software interrupt — process notified asynchronously

Software Interrupts

Similar to hardware interrupt; processes interrupt each other through software operations.
Important to realize that interrupts are asynchronous! Stops execution and then restarts.

Examples:

• user types “attention” or “interrupt” key (cntl-C or DEL)

• child process completes

• an alarm scheduled by the process has expired

• resource limit exceeded (e.g., disk quota, CPU time, etc.)

• programming errors such as accessing invalid data, divide by zero

• SendInterrupt(pid, num) — sends an interrupt of type num to process pid. In Unix
this routine is kill().

• HandleInterrupt(num, handler) — specifies that user supplied routine handler should
be invoked when interrupt of type num occurs. In Unix this routine is signal().
Typical handlers:

– ignore

– terminate (perhaps with core dump of virtual space)

– user supplied interrupt handler

CS 3013 1 week6-unixipc.tex

/* signal.C */

#include <iostream>

using namespace std;

#include <signal.h>

#include <unistd.h>

#include <stdlib.h>

int n;

main(int argc, char **argv)

{

void InterruptHandler(int), InitHandler(int);

n = 0;

signal(SIGINT, InterruptHandler); /* signal 2 */

signal(SIGHUP, InitHandler); /* signal 1 */

while (1) {

n++;

sleep(1);

}

}

void InterruptHandler(int signum)

{

cout << "Received " << signum << ", value of n is " << n << ’\n’;

exit(0);

}

void InitHandler(int signum)

{

cout << "Received " << signum << ", resetting the value of n to zero\n";

n = 0;

}

CS 3013 2 week6-unixipc.tex

% g++ -o signal signal.C

% ./signal

./signal

^C (interrupt character)

Received 2, value of n is 3

% ./signal &

[1] 32363

% kill -1 %1

Received 1, resetting the value of n to zero

% kill -2 %1

% Received 2, value of n is 16

[1] Done ./signal

CS 3013 3 week6-unixipc.tex

Pipes

In Unix, a pipe is a unidirectional, stream communication abstraction. Show a picture!!

One process writes to the “write end” of the pipe, and a second process reads from the
“read end” of the pipe.

The command interpreter is responsible for setting up a pipe. For instance, upon entering:

% ls | more

the shell would:

1. create a pipe.

2. create a process for the ls command, setting stdout to the write side of the pipe.

3. create a process for the more program, setting stdin to the read side of the pipe.

A pipe consists of (keep using the same picture showing the pipe as a buffer)

• two descriptors, one for reading, one for writing.

• reading from the pipe advances the read pointer

• writing to the pipe advances the write pointer

• example of the bounded-buffer problem:

– operating system buffers data in the pipe (Unix pipe 4096 bytes (4K))

– operating system blocks reads of empty pipe

– operating system blocks writes to full pipe

• pipe data consists of unstructured character stream

CS 3013 4 week6-unixipc.tex

Pipes unify input and output. When a process starts up, it inherits open file descriptors
from its parent.

• by convention, file descriptor 0 is standard input

• file descriptor 1 is standard output

• file descriptor 2 is standard error

Thus, when a process reads from standard input, it doesn’t know (or care!) whether it is
reading from a file or from another process.

Likewise, output written to standard output might go to a terminal, a file, or another
process.

System calls:

• count = read(fd, buffer, nbytes) reads from a file descriptor, scanf/cin built on top of.

• count = write(fd, buffer, nbytes) writes to a file descriptor, printf/cout built on top of.

• error = pipe(rgfd) creates a pipe. rgfd is an array of two file descriptors. Read from
rgfd[0], write to rgfd[1].

CS 3013 5 week6-unixipc.tex

Simple file I/O example

/* fileio.C */

#include <iostream.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#define BUFSIZE 1024

main(int argc, char *argv[])

{

char buf[BUFSIZE];

int fdIn, cnt, i;

if (argc < 2) {

fdIn = 0; /* just read from stdin */

}

else if ((fdIn = open(argv[1], O_RDONLY)) < 0) {

cerr << "file open";

exit(1);

}

// copy input to stdout

while ((cnt = read(fdIn, buf, BUFSIZE)) > 0) {

write(1, buf, cnt);

}

if (fdIn > 0)

close(fdIn);

}

CS 3013 6 week6-unixipc.tex

/* pipe.C */

#include <iostream.h>

#include <unistd.h>

#define DATA "hello world"

#define BUFFSIZE 1024

int rgfd[2]; /* file descriptors of streams */

/* NO ERROR CHECKING, ILLUSTRATION ONLY!!!!! */

main()

{

char sbBuf[BUFFSIZE];

pipe(rgfd);

if (fork()) { /* parent, read from pipe */

close(rgfd[1]); /* close write end */

read(rgfd[0], sbBuf, BUFFSIZE);

cout << "-->" << sbBuf << ’\n’;

close(rgfd[0]);

}

else { /* child, write data to pipe */

close(rgfd[0]); /* close read end */

write(rgfd[1], DATA, sizeof(DATA));

close(rgfd[1]);

exit(0);

}

}

For the following, which is the parent and which is the child? (parent should read from
pipe so “more” is the parent process). Last to complete.

% ls | more

CS 3013 7 week6-unixipc.tex

