
Preliminary

Handouts:

• Course Syllabus

• Homework Grading Policy

• Project 1

• Course Logistics

CS 3013 1 week1-intro.tex



Introduction

What Is an Operating System?

An operating system (OS) is a set of procedures that provides two basic functions:

1. allocate resources to processes (resource manager), and

2. hide the details of the physical machine and provide a more pleasant virtual machine
(abstract the resources of the physical machine).

We call these the resource and beautification principles respectively.

Resource is a commodity needed to get work done.

Actual Operating Systems

What are operating systems we know:

• Unix—many flavors

• Linux—Unix for the masses (FreeBSD, ...)

• Windows NT/2000/XP

• others, Mac OS, Palm OS, MS-DOS, BeOS, Multics, Digital VMS, Minix, Xinu,
OS/2, Mach, ...

CS 3013 2 week1-intro.tex



Layers of a System

Also look at picture from Tanenbaum’s book.

USER (Human)

|

| <---- Interface (Program Interface)

|

APPLICATION (Compiler, editor)

PROGRAM

|

| <---- Interface (System Calls)

|

OPERATING (Serves process requests)

SYSTEM

|

| <---- Interface (Hardware/privileged instructions)

|

HARDWARE (CPU, Memory, Disk, CDROM)

CS 3013 3 week1-intro.tex



Processes

Processes are hard to define precisely and exact definitions are usually operating system
specific.

A program is a set of data and code that manipulates it.

A process is a program in execution. When a CPU executes a program, the operating
system allocates space for data, space for a stack, and space for local variables. Processes
need resources—CPU, disk, transput (input/output).

Resources

Operating System allocates and manages resources needed by processes.

What resources does the OS manage?

• time (e.g., CPU time, device time)

• space (e.g., memory)

• other physical devices (e.g., network interface)

• new resources defined by the operating system (e.g., files, swap space, processes)

For example, if a printer is not managed then get garbled output.

CS 3013 4 week1-intro.tex



Services Provided by an Operating System

• context switching and scheduling (allocating CPU time to processes) (process
creation tree)

• memory management (allocating space for instructions, data, etc.)

• interprocess communication (IPC) (facilities that allow concurrent processes to
communicate with each other)

• access to a file system (picture)

• high level input/output (not to a device), is device independent

What an Operating System is not?

• hardware

• programming language

• command interpreter

• browsers

• applications such as editors, mailers, compilers, and loaders. Applications use the
facilities provided by the operating system.

CS 3013 5 week1-intro.tex



The Design Process

• philosophies define an overall strategy (fairness). The operating system should

– make efficient use of resources. Resources should be used as much as possible
and the operating system should finish as many processes as possible. However,
the operating system should provide:

– make fair use of resources and let each process have the resources it needs.

It is a fundamental point that the two goals of an operating system are often
contradictory.

• policies chose how activities are to proceed (FCFS scheduling, highest priority for
super user jobs, etc.)

• mechanisms enforce policies. The nuts and bolts of the OS.

We’ll study policies and mechanisms. Whenever possible, the operating system designer
should build mechanism, rather than policy. Once a policy is placed in the implementation,
it cannot easily be changed. Leaving policy in the hands of the user or system
administrator provides the greatest flexibility. It is important to study both policy and
mechanism, because there is a cost associated with carrying out specific policies.

The operating system designer wants to implement mechanism and allow policy to be
flexible.

CS 3013 6 week1-intro.tex



History

How did operating systems evolve?

(more details in Tanenbaum)

1. Single program execution. (no Operating System) In early days, machines didn’t have
operating systems; programs took over the entire machine. Programs, written in
assembly language (or worse), had to know such low-level details such as how to
perform input/output. Punched on paper tape and then computer cards. However,
early programs spent most of their time performing the input/output needed to read
and print the job!

2. Batch (Spooling). To make better use of resources, spooling systems were developed
that copied jobs from card readers to tape, so that once the job could be run, the
CPU could fetch it from tape rather than from the (relatively) slow card reader.
Later spooled onto disk.

Interrupts. Introduced the notion of interrupts so devices could alert the CPU when
they were finished. However, running just one job by itself was still inefficient.

3. Multiprogramming. The next step in operating systems development,
multiprogramming, gave the illusion of executing several programs simultaneously.
Multiprogramming systems execute each job for several thousands of a second
providing the appearance of running several jobs simultaneously. Thus, notion of a
process. Still compute bound jobs could monopolize the CPU.

Time-slicing. In time-sharing systems, all processes are scheduled to run in
round-robin fashion.

One of the systems was MULTICS at M.I.T. Was a predecessor of the UNIX
operating system done at Bell Labs. 1970ish.

4. Personal Computers. MS-DOS did not allow multiprogramming. Windows Operating
Systems now use it.

5. *nix for the Masses. Linux, FreeBSD, ...

6. Distributed and Network Operating Systems. Spans multiple machines. Distributed is
transparent of machines, N.O.S. is not.

7. Specialized Operating Systems.

• server operating systems (Web), use of Unix/Linux

• real-time operating systems, performance constraints—hard and soft.

• embedded operating systems, Personal Data Assistants (PDAs). Examples are
PalmOS and Windows CE (Consumer Electronics)

• smart card operating systems, credit-card size with a CPU chip

CS 3013 7 week1-intro.tex



Hardware Review

Look at Figure 1-5.

Will look at relevant details of devices.

Hierarchy of storage size/speed.

Look at textbook for more details.

CS 3013 8 week1-intro.tex



Operating System Structure

What does the operating system look like? How is it organized?

• Simple Systems. Operating system not separated from applications. No protection.
Example is MS-DOS. Embedded systems.

• Monolithic Systems. The big mess. Unix (Linux). See pictures. Talk about the kernel
as the privileged portion of the O.S.

• Layered Systems. XINU as an example. Also MINIX (motivated Linux).

• Microkernel. Clients obtain service by sending messages to server processes. (also
called client-server). Simple approach where simple kernel mechanism allows policies
to be implemented in server processes.

• Virtual Machines. Emulated machine environment for application. IBM VM/370
environment. Java Virtual machine. Vmware, Xen, Linux Vservers, Solaris Zones,
Virtuozzo.

A trend towards this latter type of organization. More amenable for moving towards a
distributed system.

Build minimum mechanism into the kernel and leave policy decisions to the servers.

Issues of flexibility vs. performance. Windows NT uses partial microkernel approach.

CS 3013 9 week1-intro.tex



Operating Systems for Study

• Unix— Developed late 70s. traditional, monolithic multitasking O.S.

• Linux— “free” on a wide range of platforms. Open source software.

– 1991. Developed by Linus Torvalds for 80386 processor. evolved from Minix

– v1.0 in 1994 supporting networking.

• Windows NT/2000/XP— real O.S. from Microsoft supporting multitasking.

CS 3013 10 week1-intro.tex


