CS 3013 Operating Systems WPI, A Term 2006
Craig E. Wills Project 3 (20 pts)
Assigned: Thursday, September 7, 2006 Due: Tuesday, Sketeif, 2006

Important: This project is to be done by each student groups & not an individual student
project.

| ntroduction

Thegetrusage(pystem call returns resource information about a procdssrusage structure

it uses has a number of fields, not all of which are filled in byieg operating system. In this
project you will examine the Linux kernel code to see whatlBet fills in for therusage structure
and extend the kernel implementation so thatgéeusage(system call returns information about
context switches. Context switches occur in the processtgdar, which is at core of the operating
system.

Description

For this project, you should initially look at thgetrusage(system call. It is in
lusr/src/linux/kernel/sys.c . The system call itself isysgetrusage(which calls the
routinegetrusage() You should see that the filled in fields of thesage structure come from the
structuretask_struct . This latter structure contains information about eacltgss (task) in
the system. Its definition is ifusr/include/linux/sched.h

Once you have identified thask_struct fields that are used to fill in theisage struc-
ture, you should see where these fields are initialized andified in the source code. You will

need to look irkernel/fork.c andkernel/exit.c for initialization and updates of these
fields. You can look irkernel/sys.c and files in the directory
{usr/src/linux/mm to see where thask_struct fields are updated.

After familiarizing yourself with whagetrusage(glready does, you need to extend its func-
tionality to return meaningful values for voluntary andahwntary context switches. You will first
need to add fields to thask_struct to keep track of context switches for each process. You
will need fields both for the process itself and its childr&ou can model your changes on how
minor and major page faults are handled, although as destldber you will be keeping track of
voluntary and total context switches. When you addttact task_struct , Yyou also need
to change théNIT_TASK macro (also inrsched.h ) to be sure the initial values are in place.
Also, note thasched.h has a lot of files depending upon it, meaning there will be &iat need
recompilation every time you modify it. Changehed.h as little as possible.

Once you have the structure changes in place, you need tdynapgiropriate code to return the
value of these fields for a call getrusage() Initially, just initialize the values to a fixed, non-zero
value, such as one, so you can verify your code is working. Wioel callgetrusage(at this point
it will just return this fixed value. Your code should accumatel values for child processes when
these processes exit (as done for other fieldemel/exit.c ). If you test your code with the



mini-shell from project 1, you should see the number of cargevitches increase for each forked
child process.

Recor ding Context Switches

When you have verified your changes work, then you are readyadify the kernel code to
actually update théask_struct fields when a context switch does occur. Context switches
occur in the scheduler.

The scheduler is a kernel function calledhedule()that gets called from other system call
functions (usually when a process goes to sleep waiting @y, after every system call and after
some interrupts. When invoked, the scheduler:

1. Performs some basic periodic tasks, like handling intgrservice routines (not a concern
of this project)

2. Chooses one process to execute according to the schggoliny
3. Dispatches the chosen process to run

The Linux scheduler contains different built-in schedglstrategies wittsCHED_OTHERs
the default. You will not need to be concerned about speadtficies for this project.

Linux maintains a countekstat.context_swtch , Which is a global counter that is in-
cremented whenever a context switch occurs. This increroectrs in theschedule()func-
tion, when the process identified by tteesk_struct pointer variableprev switches to the
task_struct pointer variablenext (whereprev andnext are different). At this point you
can insert a statement to increment the total number of gbavétches (both voluntary and in-
voluntary) for the process pointed to pyev (since you will keep track of the number of context
switches from a process rather than to a process so you shsepdev rather thamext ). You
will then have the total number of context switches, bothuatdry and involuntary. At this point,
a voluntary context switch means the process is in a stagée tithn TASKRUNNING and is most
likely waiting for I/O. TASK_RUNNING is used as the state for both running and ready pseses
Therefore, ifprev->state is not TASK RUNNING then the voluntary context switch count
can be incremented as well.

Hints

When writing kernel code, you will want to print messagesttinat, as you do iprintf(). Since
many parts of the kernel may not have access to the stdiayjbkarnel developers wrote their
own version ofprintf() calledprintk(). printk() basically behaves the samemmitf(), in terms of
formatting. Furthermoreprintk() also writes messages to the log filar/log/messages ,

SO you can view output there in case your modified OS crashes.might add prefixes to your
printk() messages, such as "CEW: ” or "Fossil: ” so you can more eagiky qut your messages
from the log file. Be careful! If you havprintk() messages in a part of the kernel that is accessed
frequently it can fill up your log file quickly. When this happse your system can become unstable.
Check the size of your log file (usirlg -I) and the disk space that is free (usohg frequently.

2



You are advised to take a conservative, incremental strdtegleveloping your new schedul-
ing policy:

e Familiarize yourself with the kernel code where fields usgdétrusage(are updated. Use
printk() statements as needed to build up confidence where to add yalifications.

e Add fields to thetask_struct to keep track of context switches for each process. You
will need fields both for the process itself and its childrédnce you have the structure
changes in place, you need to modify appropriate code toréte value of this fields for a
call to getrusage() Initially, just initialize the values to a fixed, non-zeralue, such as one,
S0 you can verify your code is working. When you agditrusage(at this point it will just
return this fixed value.

e Modify kernel/sched.c to properly record context switches. You may ysetk()
statements here to build up confidence, but this code is apaoteof the operating system
and will result in numerous log messages so pay attentidmetgize of the log file.

e Test your changes using a copy of your shell from project 1lpited to use your modified
getrusage(pystem call.

e The filesched.h has alot of files depending upon it, meaning there will be #hat need
recompilation every time you modify it. Try to minimize thember of times you modify
this file.

Remember to save your work frequently in case you crash yaghme or need to "roll-back”
to a previous working source code version! Refehttp://fossil.wpi.edu/ for more
information on how to do this and general use of the Fossialadbother useful Linux links.

Additional Wor k

Completion of all portions up to this point define the basiobve for this project. These portions
are worth a total of 17 out of the 20 points for the project. therfinal three points of the project,
you need to implement an additional system galirusagepid(along with a sample test program.
See the Fossil Web page for an overview of adding a systentoddle Linux operating system.
Thegetrusagepid(3ystem call is similar tgetrusage()but the first argument is now a process
id, rather tharRUSAGE_SELPBr RUSAGE_CHILDRENTIhis system call should get a pointer
to the current process using the routiimed_task by_pid(), which is defined irsched.h . This
routine returns théask_struct pointer for the given pid or NULL if the given pid does not
exist. Once your routine has thesk _struct pointer just calgetrusage()n kernel/sys.c
to returnRUSAGE_SELRnformation for the given process id. If the given processlags not
exist then return a value of -1 just getrusage(yloes.
Write a simple test prograngetrinfo, that takes a single optional argument. The argument is
the numeric process id for which to obtain resource inforomatYou can use the functiostoi()
to convert the command line string to an integer. If the arguims not given then default to the
process id of the current process.



The output ofgetrinfo should be similar to that used for project 1 except you will pont
wall-clock time. You need to only print fields that you knowka meaningful value returned by
the system call.

$ getrinfo 341

< print rusage stats for pid 341 >

$ getrinfo

< print rusage stats for this process >

Submission of Assignment
You must hand in the following:

¢ All modified source code files for your solution (suchsgs.c , sched.c ,sched.h and
other files you modified).

e A compiled version of your kernel.
e A brief description of your design.
¢ Instructions on how to incorporate your code into the ketresd and compile it.

e A copy of project 1 code that can be compiled to demonstrateitle of the new version of
getrusage()

e A copy of the source code fgetrinfoif you did the additional work.

Use “proj3” as the project name for turnifcé/bin/turnin ). When turnin, also include
file "group.txt” which contains the following:

group_name
login_namel last_namel, first namel
login_name2 last_name2, first_ hame2

Also, before you turnin tar up (with gzip) your files. For exale1

mkdir proj3
cp * proj3 / == copy all your files to submit to proj3 directory
tar -czf proj3.tgz proj3

then:

scp proj3.tgz login_name@ccc:™/
ssh login_name@ccc |/ will ask your ccc passwd * [
/cs/bin/turnin submit ¢s3013 proj3 proj3.tgz



