
CS 3013 Operating Systems WPI, A Term 2006
Craig E. Wills Project 3 (20 pts)
Assigned: Thursday, September 7, 2006 Due: Tuesday, September 19, 2006

Important: This project is to be done by each student group. This is not an individual student
project.

Introduction

Thegetrusage()system call returns resource information about a process. The rusage structure
it uses has a number of fields, not all of which are filled in by a given operating system. In this
project you will examine the Linux kernel code to see what fields it fills in for therusage structure
and extend the kernel implementation so that thegetrusage()system call returns information about
context switches. Context switches occur in the process scheduler, which is at core of the operating
system.

Description

For this project, you should initially look at thegetrusage()system call. It is in
/usr/src/linux/kernel/sys.c . The system call itself issysgetrusage()which calls the
routinegetrusage(). You should see that the filled in fields of therusage structure come from the
structuretask_struct . This latter structure contains information about each process (task) in
the system. Its definition is in/usr/include/linux/sched.h .

Once you have identified thetask_struct fields that are used to fill in therusage struc-
ture, you should see where these fields are initialized and modified in the source code. You will
need to look inkernel/fork.c andkernel/exit.c for initialization and updates of these
fields. You can look inkernel/sys.c and files in the directory
/usr/src/linux/mm to see where thetask_struct fields are updated.

After familiarizing yourself with whatgetrusage()already does, you need to extend its func-
tionality to return meaningful values for voluntary and involuntary context switches. You will first
need to add fields to thetask_struct to keep track of context switches for each process. You
will need fields both for the process itself and its children.You can model your changes on how
minor and major page faults are handled, although as described later you will be keeping track of
voluntary and total context switches. When you add tostruct task_struct , you also need
to change theINIT_TASK macro (also insched.h ) to be sure the initial values are in place.
Also, note thatsched.h has a lot of files depending upon it, meaning there will be a lotthat need
recompilation every time you modify it. Changesched.h as little as possible.

Once you have the structure changes in place, you need to modify appropriate code to return the
value of these fields for a call togetrusage(). Initially, just initialize the values to a fixed, non-zero
value, such as one, so you can verify your code is working. When you callgetrusage()at this point
it will just return this fixed value. Your code should accumulate values for child processes when
these processes exit (as done for other fields inkernel/exit.c ). If you test your code with the

1



mini-shell from project 1, you should see the number of context switches increase for each forked
child process.

Recording Context Switches

When you have verified your changes work, then you are ready tomodify the kernel code to
actually update thetask_struct fields when a context switch does occur. Context switches
occur in the scheduler.

The scheduler is a kernel function calledschedule(), that gets called from other system call
functions (usually when a process goes to sleep waiting for I/O), after every system call and after
some interrupts. When invoked, the scheduler:

1. Performs some basic periodic tasks, like handling interrupt service routines (not a concern
of this project)

2. Chooses one process to execute according to the scheduling policy

3. Dispatches the chosen process to run

The Linux scheduler contains different built-in scheduling strategies withSCHED_OTHERas
the default. You will not need to be concerned about specific policies for this project.

Linux maintains a counterkstat.context_swtch , which is a global counter that is in-
cremented whenever a context switch occurs. This incrementoccurs in theschedule()func-
tion, when the process identified by thetask_struct pointer variableprev switches to the
task_struct pointer variablenext (whereprev andnext are different). At this point you
can insert a statement to increment the total number of context switches (both voluntary and in-
voluntary) for the process pointed to byprev (since you will keep track of the number of context
switches from a process rather than to a process so you shoulduseprev rather thannext ). You
will then have the total number of context switches, both voluntary and involuntary. At this point,
a voluntary context switch means the process is in a state other than TASKRUNNING and is most
likely waiting for I/O. TASK RUNNING is used as the state for both running and ready processes.
Therefore, ifprev->state is not TASK RUNNING then the voluntary context switch count
can be incremented as well.

Hints

When writing kernel code, you will want to print messages to stdout, as you do inprintf(). Since
many parts of the kernel may not have access to the stdio library, kernel developers wrote their
own version ofprintf() calledprintk(). printk() basically behaves the same asprintf(), in terms of
formatting. Furthermore,printk() also writes messages to the log file/var/log/messages ,
so you can view output there in case your modified OS crashes. You might add prefixes to your
printk() messages, such as ”CEW: ” or ”Fossil: ” so you can more easily pick out your messages
from the log file. Be careful! If you haveprintk() messages in a part of the kernel that is accessed
frequently it can fill up your log file quickly. When this happens, your system can become unstable.
Check the size of your log file (usingls -l) and the disk space that is free (usingdu) frequently.

2



You are advised to take a conservative, incremental strategy for developing your new schedul-
ing policy:

• Familiarize yourself with the kernel code where fields used by getrusage()are updated. Use
printk() statements as needed to build up confidence where to add your modifications.

• Add fields to thetask_struct to keep track of context switches for each process. You
will need fields both for the process itself and its children.Once you have the structure
changes in place, you need to modify appropriate code to return the value of this fields for a
call togetrusage(). Initially, just initialize the values to a fixed, non-zero value, such as one,
so you can verify your code is working. When you callgetrusage()at this point it will just
return this fixed value.

• Modify kernel/sched.c to properly record context switches. You may useprintk()
statements here to build up confidence, but this code is a corepart of the operating system
and will result in numerous log messages so pay attention to the size of the log file.

• Test your changes using a copy of your shell from project 1 compiled to use your modified
getrusage()system call.

• The filesched.h has a lot of files depending upon it, meaning there will be a lotthat need
recompilation every time you modify it. Try to minimize the number of times you modify
this file.

Remember to save your work frequently in case you crash your machine or need to ”roll-back”
to a previous working source code version! Refer tohttp://fossil.wpi.edu/ for more
information on how to do this and general use of the Fossil laband other useful Linux links.

Additional Work

Completion of all portions up to this point define the basic objective for this project. These portions
are worth a total of 17 out of the 20 points for the project. Forthe final three points of the project,
you need to implement an additional system callgetrusagepid()along with a sample test program.
See the Fossil Web page for an overview of adding a system callto the Linux operating system.

Thegetrusagepid()system call is similar togetrusage(), but the first argument is now a process
id, rather thanRUSAGE_SELFor RUSAGE_CHILDREN. This system call should get a pointer
to the current process using the routinefind taskby pid(), which is defined insched.h . This
routine returns thetask_struct pointer for the given pid or NULL if the given pid does not
exist. Once your routine has thetask_struct pointer just callgetrusage()in kernel/sys.c
to returnRUSAGE_SELFinformation for the given process id. If the given process iddoes not
exist then return a value of -1 just asgetrusage()does.

Write a simple test program,getrinfo, that takes a single optional argument. The argument is
the numeric process id for which to obtain resource information. You can use the functionatoi()
to convert the command line string to an integer. If the argument is not given then default to the
process id of the current process.

3



The output ofgetrinfo should be similar to that used for project 1 except you will not print
wall-clock time. You need to only print fields that you know have a meaningful value returned by
the system call.

$ getrinfo 341
< print rusage stats for pid 341 >
$ getrinfo
< print rusage stats for this process >

Submission of Assignment

You must hand in the following:

• All modified source code files for your solution (such assys.c , sched.c , sched.h and
other files you modified).

• A compiled version of your kernel.

• A brief description of your design.

• Instructions on how to incorporate your code into the kerneltree and compile it.

• A copy of project 1 code that can be compiled to demonstrate the use of the new version of
getrusage().

• A copy of the source code forgetrinfoif you did the additional work.

Use “proj3” as the project name for turnin (/cs/bin/turnin ). When turnin, also include
file ”group.txt” which contains the following:

group_name
login_name1 last_name1, first_name1
login_name2 last_name2, first_name2
...

Also, before you turnin tar up (with gzip) your files. For example:

mkdir proj3
cp * proj3 / * copy all your files to submit to proj3 directory * /
tar -czf proj3.tgz proj3

then:

scp proj3.tgz login_name@ccc:˜/
ssh login_name@ccc / * will ask your ccc passwd * /
/cs/bin/turnin submit cs3013 proj3 proj3.tgz

4


