
CS2223 Algorithms D Term 2009 By Prof. Carolina Ruiz

Exam 3 Solutions Dept. of Computer Science

May 4, 2009 WPI

PROBLEM 1: Asymptoptic Growth Rates (10 points)
Let A and B be two algorithms with runtimes TA(n) = loga n and TB(n) = logb n,

respectively, where a and b are two (possibly different) constants a > 1, b > 1.
Prove that TA(n) = Θ(TB(n)).

Hint: use the fact that loga n = logb n/ logb a

(DO NOT SPEND MORE THAN 5 MINUTES ON THIS PROBLEM.)

Solution:

Alternate Solution 1:
TA(n) = loga n = logb n/ logb a = (1/ logb a)∗logb n = k∗logb n where k = 1/ logb a is a constant.

Note that logb a > 0 since a, b > 1. Hence TA(n) = Θ(logb n) = Θ(TB(n))

Alternate Solution 2:

TA(n) = loga n, TB(n) = logb n

lim
n→+∞

TB(n)

TA(n)
= lim

n→+∞

logb n

loga n
= lim

n→+∞

logb n

logb n/ logb a
= lim

n→+∞

logb a = logb a > 0 since a, b > 1

Hence, TA(n) = Θ(TB(n))

1



PROBLEM 2: Divide–and–Conquer (45 points + 5 bonus points)
Given a sorted array of distinct integers A[1..n], your job is to find out whether there

is an index i such that A[i] = i (that is, whether there is a cell in the array whose content
and whose index are the same). Here are a few examples:

If
A = -7 -3 0 2 5 7 9 15 20 32 51 63

index : 1 2 3 4 5 6 7 8 9 10 11 12
then the answer is “i = 5”.

If
A = -17 -8 -1 0 7 13 82 236

index : 1 2 3 4 5 6 7 8
then the answer is “no such i”

If
A = -17 2 3 4 9 13 82 236

index : 1 2 3 4 5 6 7 8
then any one of the following 3 answers
would suffice: “i=2”, “i=3”, or “i=4”.

Provide a divide–and–conquer algorithm to solve this problem in O(log n) time.
Hint: Consider an arbitrary index k, with 1 ≤ k ≤ n. One of the following 3 cases holds:

• If k = A[k], then k is the answer!

• If k < A[k], then think of how k + 1 compares to A[k + 1], k + 2 compares to A[k + 2],
. . ., etc.

• If k > A[k], then think of how k − 1 compares to A[k − 1], k − 2 compares to A[k − 2],
. . ., etc.

Construct your divide–and-conquer solution following the steps below.

1. (20 Points) Explain the design of your algorithm clearly (10 points) and prove care-
fully that the resulting algorithm is correct (10 points). Remember that your divide–
and–conquer algorithm must run in O(log n) time. You can assume that the length of
the array, n, is a power of 2.

Solution:
Following the hint provided above:

• If k < A[k], then k + 1 < A[k] + 1 and since the array is sorted in increasing
order and doesn’t contain repetitions, then A[k] + 1 ≤ A[k + 1]. Hence, k + 1 <
A[k] + 1 ≤ A[k + 1] and so k + 1 < A[k + 1]. The same argument holds for
k + 2, k + 3, . . . , n. In summary, for every k+, k ≤ k+ ≤ n, k+ < A[k+].

Hence, if k < A[k] and there is some index i such that A[i] = i, then it must be
the case that i < k.

• If k > A[k], then k − 1 > A[k] − 1 and since the array is sorted in increasing
order and doesn’t contain repetitions, then A[k] − 1 ≥ A[k − 1]. Hence, k − 1 >
A[k] − 1 ≥ A[k − 1] and so k − 1 > A[k − 1]. The same argument holds for
k − 2, k − 3, . . . , 1. In summary, for every k−, 1 ≤ k− ≤ k, k− > A[k−].

Hence, if k > A[k] and there is some index i such that A[i] = i, then it must be
the case that i > k.

So given an array A[1..n] Our divide–and–conquer solution will select k as the midpoint
of the array k = n/2. If k = A[k] then we return k. If k < A[k] then we recursive
look for a solution in the first half of the array (i.e, A[1..k − 1]). If k > A[k] then we
recursive look for a solution in the second half of the array (i.e, A[k + 1..n]).

2



2. (10 Points) Write the algorithm in detailed pseudo-code.

Solution:
Here is our algorithm implementing the ideas above:

Binary-Search-for-fixpoint(A[1...n]) {
Return Aux-Binary-Search-for-fixpoint(A, 1, n)

}
Aux-Binary-Search-for-fixpoint(A[u...v]) {

If u > v
Return “no such i”

Else {
Let k = floor((u + v)/2)
If A[k] = k

Return k
Else If k < A[k]

Return Aux-Binary-Search-for-fixpoint(A,u,k-1)
Else // k > A[k] //

Return Aux-Binary-Search-for-fixpoint(A,k+1,v)
}

}

3. (10 Points) Write a recurrence for the runtime T (n) of the algorithm. Explain your
work.

Solution:
T (n) = T (n/2).

4. (10 Points) Solve the recurrence to show that your algorith is O(logn). For this,
either use the recursion-tree method (= ”unrolling” the recurrence), the substitution
method (= ”guess + induction”), or the master theorem. Show your work and explain
your answer.

Solution:
T (n) = T (n/2). Since this recurrence has the form T (n) = aT (⌈n/b⌉)+O(nd) for some
constants a = 1, b = 2, and d = 0, and since d = 0 = logba = log21, then the Master
Theorem tells us that T (n) = O(nd log n) = O(n0 log n) = O(log n).

For a solution using the substitution method (= ”guess + induction”), see the Solved
Exercise 1 in the course textbook (page 242).

3



PROBLEM 3: Dynamic Programming (45 points + 5 bonus points)
Suppose that your MP3 player has a disk capacity of M megabytes, where M is an integer

(whole number). You have a list of n songs S1, S2, S3, . . . , Sn that you would like to download
onto your MP3 player. The ith song Si takes up mi megabytes. The problem is that your
MP3 player capacity, M , is less than the sum of all the mi’s. That is, M <

∑

n

i=1
mi.

Assume that you want to maximize the disk utilization of your MP3 player (that is, you
want to use as many of your M megabytes as possible). We proved in Homework 4 that
a greedy algorithm that selects songs to download in decreasing size order (from largest to
smallest) will NOT produce an optimal solution.

Provide an optimal dynamic–programming solution to this problem following the steps
below. Note that the output of the algorithm should merely be the maximum disk utilization
(a single numerical value, in megabytes). The subset of songs for which this maximum is
attained, does not need to be returned. Here is the input–output specification:

Maximum disk utilization(m[1...n], M)
Inputs: Array m[1...n] of song sizes, and positive integer disk capacity M .
Output: Maximum disk utilization

∑

i∈S
mi that can be attained over a

subset S ⊆ {1..n} of songs without exceeding the disk capacity M .

1. (25 Points) Dynamic Programming Solution.

(a) (20 points) Design a dynamic programming solution to the disk utilization prob-
lem, using the subproblems suggested by the hint that follows.

Hint: Consider whether or not to add the i-th song to a disk of ca-
pacity j, assuming that the first i − 1 songs and smaller disk capacities
j′ < j have already been considered. To this end, define a 2-dimensional
(n + 1) × (M + 1) matrix (array) OPT [0..n][0..M ], where OPT [i, j] =
maximum disk utilization over a subset of the first i songs S1..Si, assum-
ing a maximum disk capacity of j megabytes.

Find a recurrence relation that expresses the solution of OPT [i, j] in terms of
the solutions of slightly ”smaller” problems (i.e., other cells in the matrix OPT
whose values can be calculated before). Include suitable boundary conditions
for the recurrence relation. At each stage argue decisively that your solution is
correct.

Solution:
Define OPT as in the hint. This corresponds to considering, for each i between
0 and n, and each j between 0 and M , the subproblem consisting of finding the
maximum disk utilization that is possible by selecting songs from among the first
i only, assuming disk capacity j. In order to derive a recurrence relation for OPT ,
consider whether to add the i-th song Si to a disk of capacity j, assuming that
songs S1..Si−1 have already been considered. If song Si doesn’t fit on the disk at
all, that is, if mi > j, and assuming that only the first i songs are allowed (we’re
targeting OPT [i, j] here), then of course the best that you can do is whatever the
first i − 1 songs allow:

OPT [i, j] = OPT [i− 1, j] if mi > j

Otherwise, if song Si fits, then you have two options: you can either add Si to the
disk, or not, and you will need to pick whichever of these two options provides a
higher disk utilization. Note that if you do add Si to the disk, then the remaining

4



disk space j −mi should be optimally utilized, and this must be done by picking
from among the remaining songs, that is, only songs from among the first i − 1:

OPT [i, j] = max{OPT [i− 1, j], mi + OPT [i− 1, j − mi]} if mi ≤ j

Finally, if i = 0 (base case), there are no songs to consider at all, and so the
maximum disk utilization possible is 0. Putting all of the above considerations
together, we arrive at the following recurrence relation (base case included):

OPT [i, j] =











0, if i = 0

OPT [i− 1, j], if mi > j

max{OPT [i− 1, j], mi + OPT [i− 1, j − mi]}, otherwise

(b) (5 points) Based on the preceding part of this question, determine in what order
you’ll calculate the values of the cells in OPT . Explain.

Solution:
In light of the recurrence relation, all values OPT [i− 1, j′] with 0 ≤ j′ ≤ j must
have been calculated prior to attempting to calculate OPT [i, j]. Therefore, we
first calculate the values OPT [0, j′], for 0 ≤ j′ ≤ M , then the values OPT [1, j′]
in order of increasing j′, then the values OPT [2, j′], and so on.

2. (12 Points) Algorithm. Write a dynamic programming algorithm (in detailed
pseudo-code) implementing the solution you designed above.

Solution:

Maximum disk utilization(m[1...n], M)
Inputs: Array m[1...n] of song sizes, and positive integer disk capacity M .
Output: Maximum disk utilization

∑

i∈S
mi that can be attained over a

subset S ⊆ {1..n} of songs without exceeding the disk capacity M .
{

For j := 0 to M do
OPT [0, j] = 0

For i := 1 to n do
For j := 1 to M {

If mi > j Then
OPT [i, j] = OPT [i− 1, j]

Else
OPT [i, j] = max{OPT [i− 1, j], mi + OPT [i− 1, j − mi]}

}
return(OPT [n, M ])

}

3. (13 Points) Time Complexity. Determine the asymptotic running time of your
dynamic programming algorithm above, as a function of the input sizes n and M .
Give the simplest possible big Theta expression for the running time.

Solution:
The initialization loop makes M +1 passes, each of which involves a single assignment.
Therefore, the total initialization time is Θ(M). A total of nM passes are made through
the nested loops in which the values of the OPT matrix are updated. Each pass just

5



involves an if-else, an assignment, and possibly an addition and max evaluation. In
either case, the total time per pass is bounded above and below by nonzero, finite
constants (that do not depend on either n or M). It follows that the total time needed
for the neted update loops is Θ(nM). Adding the time for the return statement at the
end, we obtain a total running time Θ(nM).

6


