
CS2223 Algorithms D Term 2009 By Prof. Carolina Ruiz

Exam 2 Solutions Dept. of Computer Science

April 17, 2009 WPI

PROBLEM 1: Asymptoptic Growth Rates (30 points) Take the following list of
functions and arrange them in ascending order of asymptotic growth rate. If function g(n)
immediately follows function f(n) in your list, then you must prove that f(n) = O(g(n)).
Prove your answers decisively, that is, provide formal, mathematical proofs using either
the definition of big–O or the theorems stated in class or in the textbook.
f1(n) = n4; f2(n) = 8n; f3(n) = log(n); f4(n) = nn; f5(n) =

√
n.

Solution:
Ascending order list:
f3(n) = log(n); f5(n) =

√
n; f1(n) = n4; f2(n) = 8n; f4(n) = nn;

1. (7 points) Prove that your 1st function is O(your 2nd function):

Solution:

f3(n) = log n, f5(n) =
√

n

lim
n→+∞

f5(n)

f3(n)
= lim

n→+∞

√
n

log n
= lim

n→+∞

(1/2) ∗ n−1/2

1/n
(by applying de l’Hôpital’s rule)

= lim
n→+∞

n ∗ n−1/2

2
= lim

n→+∞

√
n

2
= +∞

Hence, f5(n) = Ω(f3(n)) and f3(n) = O(f5(n))

2. (7 points) Prove that your 2nd function is O(your 3rd function):

Solution:

f5(n) =
√

n, f1(n) = n4

lim
n→+∞

f1(n)

f5(n)
= lim

n→+∞

n4

√
n

= lim
n→+∞

n4

n1/2
= lim

n→+∞

n3.5 = +∞

Hence, f1(n) = Ω(f5(n)) and f5(n) = O(f1(n))

3. (8 points) Prove that your 3rd function is O(your 4th function):

Solution:

f1(n) = n4, f2(n) = 8n = (eln 8)n = en ln 8

lim
n→+∞

f1(n)

f2(n)
= lim

n→+∞

n4

8n
= lim

n→+∞

n4

en ln 8

= lim
n→+∞

4 ∗ n3

ln 8en ln 8
(by applying de l’Hôpital’s rule)

= lim
n→+∞

4 ∗ 3 ∗ 2 ∗ 1

ln 84en ln 8
(by applying de l’Hôpital’s rule 3 more times)

= lim
n→+∞

24

ln 848n
= 0

Hence, f2(n) = Ω(f1(n)) and f1(n) = O(f2(n))

1

4. (8 points) Prove that your 4th function is O(your 5th function):

Solution:

f4(n) = nn, f2(n) = 8n

lim
n→+∞

f4(n)

f2(n)
= lim

n→+∞

nn

8n
= lim

n→+∞

(n/8)n = lim
n→+∞

(n/8)n = +∞

Hence, f4(n) = Ω(f2(n)) and f2(n) = O(f4(n))

Alternate Solution: To illustrate how to write a proof from the O(.) definition.

There exist constants c = 1 and n0 = 8 such that for all n ≥ n0, 8n ≤ c ∗ nn. Here is
why: If n ≥ 8, then for any positive a > 0, 8a ≤ na. In particular, since n ≥ 8 > 0,
then 8n ≤ nn.

Hence, by the definition of O(.), f2(n) = 8n = O(nn).

2

PROBLEM 2: Graph Algorithms (40 points + 5 bonus points)
This problem consists of 2 related parts:

Part I: Inverse of a Directed Graph The inverse of a directed graph G is another
directed graph GI which is identical to G except that the direction of each edge in G has
been reversed. In other words, if G = (V, E) is a directed graph, then GI = (V, EI) is
another directed graph where the edge (u, v) belongs to EI if and only if the edge (v, u)
belongs to E.

1. Pseudo-code (10 points)

Write detailed pseudo–code for an algorithm that receives a graph G = (V, E) as input,
and produces GI = (V, EI) as output. Assume that both G and GI are represented
using an adjacency list representation. (Do NOT assume that the neighbors of a node
are organized in any particular order in the node’s adjacency list). Your algorithm
should run in linear time, that is it should be O(n+m), where n = |V | and m = |E| =
|EI |. Explain your work.

Solution:

Instructions: Time
per in-
struc-
tion:

Number
of iter-
ations:

Total per
instruc-
tion:

Invert-Graph(G): returns GI

Create an empty adjacency list for GI c1n 1 c1n
For each node u in G do { c2 n c2n
For each edge (u, v) in the adjacency list of u in G do { c3 m c3m

add an edge (v, u) in the adjacency list of v in GI c4 m c4m
}

}

TOTAL TIME: (c1+c2)n+
(c3 + c4)m

Note that creating an empty adjacency list for GI entails only to initialize an array of
n positions (one for each node in the graph) each containing an empty list.

2. Time Complexity Analysis (10 points) Analyze the time complexity of your algo-
rithm instruction by instruction in the table above. Produce a function T (n, m) that
measures the runtime of your algorithm for an input graph with n nodes and m edges.
Prove in the space provided below that T (n, m) is O(n + m).

Solution:
T (n, m) = (c1+c2)n+(c3+c4)m is O(n+m) since for all n > 0 and m > 0, there exists
a constant k = (c1+c2+c3+c4) such that T (n, m) = (c1+c2)n+(c3+c4)m ≤ k(n+m).

3

Part II: Connectivity and Strong Connectivity of a Directed Graph

Connectivity of Directed Graphs We say that a directed graph G = (V, E) is connected
if for every pair of nodes u and v in G, there is a directed path between u and v. That is,
there is a sequence of directed edges (u, e1), (e1, e2), . . . , (ek, v) in G that starts at u and ends
at v, with k ≥ 0.

Note that the same Breadth First Search (BFS) algorithm for undirected graphs discussed
in class and in the textbook would work to determine connectivity in directed graphs. That
is, given a directed graph G and a start node s in G, BFS would determine whether or not
there is a directed path between s and any other node in G.

Strong Connectivity of Directed Graphs We say that a directed graph G = (V, E)
is strongly connected if for every pair of nodes u and v in G, there is a directed path
between u and v, and there is a directed path between v and u. That is, there is a sequence
of directed edges (u, e1), (e1, e2), . . . , (ek, v) in G that starts at u and ends at v, and there is
another sequence of directed edges (v, a1), (a1, a2), . . . , (aq, u) in G that starts at v and ends
at u, with k ≥ 0, and q ≥ 0.

1. (8 points) Let s be any node in a directed graph G. What property should the BFS
tree of G starting at s, and the BFS tree of GI (the inverse graph of G) starting at
the same s satisfy to guarantee that G is strongly connected? Explain your answer in
detail. Draw sketches of these trees to help you intuition and illustrate your answer.
Remember that the edges in these trees are now directed.

Solution:
Let TG,s be the BFS tree of G starting at s, and Let TGI ,s be the BFS tree of G starting
at s. The property that both TG,s and TGI ,s must satisfy in order for G to be strongly

connected is that each and every node in G must appear in each of these two trees.

This property as well as the implied algorithm to check strong connectivity of a graph
are clearly explained in Section 3.5 of the textbook and in the corresponding slides
(which you studied to be able to solve Problem 1 of HW3).

Let u and v be two arbitrary nodes in the graph G. Assume that both u and v appear
in TG,s and in TGI ,s (see graphical depiction on next page):

(a) Since u appears in TG,s, there is a directed path s u between s and u in G.

(b) Since v appears in TGI ,s, there is a directed path s I v between s and v in GI .

(c) (b) above implies that there is a directed path v s between v and s in G.

(d) (a) and (c) above imply that there is a directed path v u between v and u in
G, namely the concatenation of v s and s u.

(e) Since v appears in TG,s, there is a directed path s v between s and v in G.

(f) Since u appears in TGI ,s, there is a directed path s I u between s and u in GI .

(g) (f) above implies that there is a directed path u s between u and s in G.

(h) (e) and (g) above imply that there is a directed path u v between u and v in
G, namely the concatenation of u s and s v.

(i) Since u and v are two arbitrary nodes in the graph, (d) and (h) above imply that
the graph G is strongly connected.

The picture below illustrate these arguments.

4

5

2. Pseudo-code (10 points)

Based on your answers above, write pseudo–code for an algorithm that receives a
directed graph G = (V, E) as input, and returns true if G is strongly connected, and
false if it is not. Assume that G is represented using an adjacency list representation.
Your pseudo-code can invoke a rutine BFS(G, s, T) that receives a directed graph G,
a node s in G, and returns the BFS tree of G starting at s. You don’t have to write
the pseudo-code for BFS(G, s, T). You just need to invoke it. You can also invoke the
Invert-Graph(G) procedure you wrote above.

Your algorithm should run in linear time, that is it should be O(n+m), where n = |V |
and m = |E|. Explain your work.

Solution:

Instructions: Time
per
instruc-
tion:

of
it-
era-
tions:

Total
per
instruc-
tion:

Is-Strongly-Connected?(G): returns a boolean {
Pick any node in G. Call it s. O(1) 1 O(1)
Call BFS(G, s, T) to construct the BFS tree T of G. O(n + m) 1 O(n + m)
/* Check if T contains all the nodes in G */ O(n) 1 O(n)
/* See procedure below */
If Tree-contains-all-graph-nodes(G, T) then {

Call BFS(GI , s, T I) to construct the BFS tree T I of GI O(n + m) 1 O(n + m)
If Tree-contains-all-graph-nodes(GI , T I) then { O(n) 1 O(n)

return(true) O(1) 1 O(1)
} Else return(false) O(1) 1 O(1)

} Else return(false) O(1) 1 O(1)
}
TOTAL TIME Is-Strongly-Connected?: O(n + m)

Tree-contains-all-graph-nodes(G = (V, E), T): re-
turns a boolean {
Create an array node-present[1...n] of integers O(n) 1 O(n)
For u := 1 to n O(1) n O(n)

node-present[u] := 0 O(1) n O(n)
Traverse the tree T level by level.
For each node u in the tree O(1) O(n) O(n)

node-present[u] := 1 O(1) O(n) O(n)
For u := 1 to n { O(1) O(n) O(n)

If node-present[u] == 0 then O(1) O(n) O(n)
return(false) O(1) 1 O(1)

}
return(true) O(1) 1 O(1)
}
TOTAL TIME Tree-contains-all-graph-nodes: O(n)

6

3. Time Complexity Analysis (7 points) Analyze the time complexity of your al-
gorithm instruction by instruction in the space provided above. Prove in the space
provided below that your algorithm O(n + m).

Solution:
As shown on the table above, Tree-contains-all-graph-nodes runs in O(n). Is-
Strongly-Connected? consists of two major parts: Constructing 2 BFS trees (O(n+
m)), and checking that each of them constains all the nodes in the graph (O(n)), plus a
fixed number of constant time instructions. Hence, the full Is-Strongly-Connected?
runs in time O(n) + O(n + m) = O(n + m).

7

PROBLEM 3: Greedy Algorithms (30 points + 5 bonus points)
You have a list of songs S1, S2, S3, . . . , Sn that you would like to download onto your MP3

player. The available disk space in our MP3 player would allow you to download all of these
songs, but your budget would not. Assume that you can spend no more than D dollars, that
the ith song Si costs di dollars, and that

∑n
i=1 di > D.

1. Greedy Strategy

Assume that you want to maximize the number of songs that you download from that
list within your D dollar budget. Describe a greedy strategy to select what songs to
download. Prove that your greedy strategy does indeed produce an optimal solution.

• Describe your greedy strategy (8 points)

Solution:
Sort the songs in increasing order of cost, and select songs one by one from this
list stated with the cheapest song until you cannot afford any more songs. That
is, select the first k songs from this sorted list, where k is such that

∑k
i=1 di ≤ D

but
∑k+1

i=1 di > D.

• Prove the optimality of your greedy strategy (10 points)

Solution:
This greedy strategy will produce an optimal solution. Here is the proof (this
proof is an adaptation of the proof I wrote in my solutions to Problem 1 HW4
CS2223 D term 2009):

The algorithm starts by sorting the songs in increasing cost order. Assume that
the resulting sorting is: Sg1, Sg2, Sg3, . . . , Sgn. Now, the algorithm will select the
first k songs on this resulting list, Sg1, Sg2, Sg3, . . . , Sgk, where k is such that
∑k

i=1 dgi ≤ D, but
∑k+1

i=1 dgi > D.

Assume by way of contradiction, that the solution produced by this greedy al-
gorithm (Sg1, Sg2, Sg3, . . . , Sgk) is not optimal. Hence there must exist a different
solution So1, So2, So3, . . . , Soq where q > k (that is, this solution contains more
songs than the one produced by the greedy algorithm). Assume that the different
solution is sorted in increasing cost order: that is, do1 ≤ do2 ≤ do3 ≤ . . . ≤ doq.

Let’s compare these two solutions position by position and let j + 1 be the first
position where the two sequences differ:

Sg1, Sg2, Sg3, . . . , Sgj, Sg(j+1), Sg(j+2), . . . , Sgk greedy
So1, So2, So3, . . . , Soj, So(j+1), So(j+2), . . . , Sok, . . . , Soq different

The greedy algorithm selected Sg(j+1) because it was the cheapest song not yet
selected (i.e., cheapest song not in Sg1, . . . , Sgj). The different solution selected
a different song So(j+1) and hence it must hold that dg(j+1) ≤ do(j+1), and also

that
∑j+1

i=1 dgi ≤
∑j+1

i=1 doi. So the greedy solution ”stays ahead” of the different
solution. We can continue this reasoning by induction and show that for each
x, 1 ≤ x ≤ q, dgx ≤ dox, and

∑x
i=1 dgi ≤

∑x
i=1 doi.

But now, the greedy algorithm stopped selecting songs after the k-th one. As
stated above, this means that

∑k
i=1 dgi ≤ D, but

∑k+1
i=1 dgi > D. Nevertheless,

the different solution picked more songs. However,
∑k+1

i=1 doi ≥ ∑k+1
i=1 dgi > D.

Hence, the different solution is not even a correct solution as it picked songs that
exceeded the budget limit D. This is a contradiction with the assumption that
the different solution was indeed a solution better than the greedy one, and hence
the greedy solution is optimal in terms of the number of songs selected.

8

2. Greedy Algorithm Write down your greedy algorithm below (10 points). You can
invoke a sorting function without having to write the code that implements sorting.
Analyze the time complexity of your algorithm in the table below (7 points).

Solution:

Instructions: Time
per in-
struc-
tion:

of
itera-
tions:

Total per
instruc-
tion:

Sort the songs in increasing order of cost O(nlogn) 1 O(nlogn)
let the resulting sorting be: Sg1, Sg2, Sg3, . . . , Sgn

with corresponding costs: dg1 ≤ dg2 ≤ dg3 ≤ . . . ≤ dgq

A := ∅ /* A is the solution set */ O(1) 1 O(1)
k := 1 O(1) 1 O(1)
While dgk ≤ D do { O(1) n O(n)

A := A union Sgk /* Add Sgk to A */ O(1) n O(n)
D := D − dgk /* pay for Sgk */ O(1) n O(n)
k := k + 1 O(1) n O(n)

}
Return (k − 1) and A
TOTAL TIME: O(nlogn)+

O(n) =
O(nlogn)

Since in the worst case k can reach n, then the while loop above can be iterated up to
n times.

9

