
CS2223 Algorithms.  B Term 2013 

Homework 2 Solutions 

By Artem Gritsenko, Ahmedul Kabir, Yun Lu, and Prof. Ruiz 

 

Problem 1. (Solutions by Artem Gritsenko) 

Algorithm: 

 

1 for each set Si: 

2     for each other set Sj: 

3         disjoint = true 

4         for each element k of Si: 

5             if k belongs to Sj: 

6                 disjoint = false 

7         if disjoint == true 

8             print 'Sets ',i,j,' are disjoint' 

9             return(true) 

10 return(false) 
 

1. Implementation Version 1 

 
DisjointSetsVersion1(L)     cost times 

1 for i = 0 to len(L)-1             1c  n+1 

2     for j = i+1 to len(L)-1:       2c  n*([(n-1)/2]+1) 

3         disjoint = True     3c  n*[(n-1)/2] 

4         for k =0 to len(L[i])-1:      4c  n*[(n-1)/2]*(n+1) 

5             for s = 0 to len(L[j])-1:   5c  n*[(n-1)/2]]*n*(n+1) 

5                 if L[i][k] == L[j][s]:  6c  n*[(n-1)/2]*n*n 

6                     disjoint = False  7c  n*[(n-1)/2]*n*n 

7         if disjoint == True    8c  n*[(n-1)/2] 

8              print‘Sets’,i,j,’are disjoint’  9c  1 

9             return(True)     10c  1 

10 return(False)       11c  1 

 

The numbers on the lines in the implementation correspond to the numbers on the lines of the 

Algorithm and mean the same instructions. Now let’s count the total number of instructions 

executed during the run of the program in the worst case, for each instruction line. 

1) The first loop iterates over all the sets to get the 1st set for comparison. The number of executions 

of the loop condition in the worst case equal to the number of sets plus one. This is because for cycle 

condition we always have 1 more iteration than for the cycle body. The cycle  body, thus would 

iterate n times. 



2) The second loop iterates over all the sets to get the 2nd set for comparison. The second cycle has 

the number of iterations n/2 because we want to consider only j > i cases. That means we have n-1 

iterations for i=0, n-2 iterations for i=1, n-3 iterations for i=2, etc. The total number of iterations 

would be sum of all numbers from n-1 to 1, which is (n-1)*n/2: 

���� − 1� − �	 =	
��

���
��� − 1� −� � = ��� − 1�

��

���
− ��� − 1�2 = 	��� − 1�2  

As in the previous case we add plus one execution for the condition, though the body of the 2
nd

 loop 

would iterate (n-1)/2 times. 

3) This instruction executes the number of times that both previous loops execute, which is the 

multiplication of the previous loops number of executions and equal to n*(n-1)/2. 

4) The third loop iterated over the elements of the 1st set, which is n iterations in the worst case. As 

in previous cases we have n+1 executions of the loop condition and n executions of the loop body. 

5) The forth loop iterates over the elements of the 2nd set, which is n iterations in the worst case. 

5)-7) The loop body is executed a number of times equal to the multiplication of the 4 loops number 

of iterations. 

8)-10) These instructions are executed only once, because if we have found the disjoint sets the 

program ends. Similarly, if we did not find a pair of disjoint sets, we just return False. 

 

The total number of instructions is the sum of products of corresponding costs and times equal to   

T(n) =  1c * (n+1)  

+ 2c * (n*(((n-1)/2)+1))  

+ 3c *(n*(n-1)/2)  

+ 4c *( n*(n-1)/2*(n+1))  

+ 5c *(n*(n-1)/2*n*(n+1))  

+ 6c *(n*(n-1)/2*n*n)  

+ 7c *(n*(n-1)/2)  

+ 8c *(n*(n-1)/2*n*n)  

+ 9c *1+ 10c *1+ 11c *1. 

 

We can group and represent it in the way: 

T(n) = 54
2

3
3

2
4
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2. Claim: )()( 4nOnT =  

 

3. Proof: We need to find 0n  and c  that for all 0nn >  the following holds: )()( ncgnT ≤ . 
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54321 kkkkkc ++++= . Thus, )()( 4nOnT = . 

 

2. Implementation Version 2. 

 
DisjointSetsVersion1(L)     cost times 

1 for i = 0 to len(L)-1             1c  n+1 

2     for j = i+1 to len(L)-1:       2c  n*([(n-1)/2]+1) 

3         disjoint = True     3c  n*[(n-1)/2] 

4         for k = 0 to len(L[i])-1:      4c  n*[(n-1)/2]*(n+1) 

5             if L[i][k]==1 & L[j][k]==1: 5c  n*[(n-1)/2]*n 

6                 disjoint = False   6c  n*[(n-1)/2]*n 

7         if disjoint == True    7c  n*[(n-1)/2] 

8              print ‘Sets’,i,j,’are disjoint’ 8c  1 

9             return(True)     9c  1 

10 return(False)       10c  1 

  

The difference with the implementation1 is that we got rid of one loop, which traversed the 

elements of the second set for comparison (line 5 in version 1). We can do this because our sets are 

consistent with each other due to the used data structure. So we can traverse over the elements of 

only the first set and use the same index for the second set. Thus, the number of instructions for the 

second implementation would be: 

 

T(n) =  1c *(n + 1)  

+ 2c * n*(((n-1)/2)+1)  

+ 3c * n*(n-1)/2 

+ 4c * n*(n-1)/2*(n+1) 

+ 5c * n*(n-1)/2*n  

+ 6c * n*(n-1)/2*n  

+ 7c * n*(n-1)/2 

+ 8c *1 + 9c *1 + 10c *1. 

 

We can group and represent it as follows: 

T(n) = 43
2

2
3

1 knknknk +++ . 

 

2.  Claim: )()( 3nOnT =  



 

3. Proof: We need to find 0n  and c  that for all 0nn >  the following holds: )()( ncgnT ≤ . 

We know that 
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3. Experimental Comparison of the two Versions. 

 

1. See hw2_problem1_code_cs2223_b13.py at: 

http://web.cs.wpi.edu/~cs2223/b13/HW/HW2/Solutions/hw2_problem1_code_cs2223_b13.py 

 

2. Execution time. 

  

Input size Version 1 Runtime (sec.) Version 2 Runtime (sec.) 

100 0.02800107 0.024001837 

200 1.732099771 0.18701005 

300 70.70604396 4.6963 

400 228.4180651 11.38765097 

500 539.2678452 22.96531296 

 

3. 

 
 

The growth of the functions match the asymptotic behavior. The thing that influences the results is 

the way the sets are randomly generated. If they are sparse, it would be easy (fast) to find a disjoint 

set. In my implementation that is regulated with a threshold parameter that says with what 

probability a certain number would be included in the set. The results generated are for the 0.2 

probability, which generated not-sparse sets. 
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Problem 2 (Solutions by Ahmedul Kabir) 

Rank the following functions by order of growth. That is, find an arrangement f1, f2, ..., f6 of the 

functions satisfying f1 = Ω(f2), f2 = Ω(f3), ..., f5 = Ω(f6). Partition your list into equivalent classes 

such that functions f(n) and g(n) are in the same class if and only if f(n) = Θ(g(n)).  

a
n
  

n
a
  

 ���  

loga(n)  

a
a*n

  

n
log

a
(n)

  

where a is a constant greater than 1. Provide a detailed, rigorous proof of each part of your 

solution. 

Solutions: Below, we’ll sort the function in increasing order of growth rate.  

Intuitively, log� � grows asymptotically slower than the others. So we start by checking whether it is O(��) 

lim�→�
��� �
�    =     lim�→�

!
" #$ 
�� %!      (using L’Hospital’s rule)   

      =    lim�→�
!

" #$ 
 " 
"

   =   lim�→�
�

�� �& �    =  0  

So, '()� � = O(��) 

 

Now, looking at �� and *�, it seems quite obvious that �� = O(*�) since the former is polynomial and the 

latter is exponential. Let us use the limit rule to verify: 

lim�→�
� 
�"    =   lim�→�

�� %!
�" �& �      (using L’Hospital’s rule)     

                          = 
�
�&� lim�→∞ �*−1

*�    = 0    

                     (since for all constants a and b such that a > 1, lim�→�
�,
�" = 0. See textbook page 55) 

Hence, �� = O(��)   

 

We will now use the limits method to find the relationship between *� and *��. 

lim�→�
�"
� "     =     lim�→�

�" �& �
� "-! �& �     (using L’Hospital’s rule)   



                    =    lim�→�
�"

�.��"�     =   lim�→�
�

�.��"� %!    =  0 [since the denominator approaches ∞] 

So, �� = O(���). For illustration purposes, we include here another proof of the fact �� = O(���) that uses 

the definition of Big-Oh directly. We need to show that there exist constants c > 0 and n0 > 0 such that for all 

n ≥ n0, *�≤ c *��. Note that since a > 1, a ≤ a
a
. Hence for any n ≥ 1, *�≤ �*��" = *��. Therefore the 

definition of  �� = O(���) is satisfied with constants c=1 and n0 = 1. 

Now for ���, we will compare it with ���. We take the logarithm of both functions (we’ll use log�). We can 

do this since log is monotonically increasing and the values of both ���  and ��� are greater than a for large 

values of n and since a > 1. Taking the log (with base a) on both functions we get  log� *�  = �� log� * = �� 

which grows faster than  log� *�� = *� log� * = an. Also note that for a > 1, an ≤ n
a 

for any n ≥ 3. Therefore 

the definition of  ��� = O(���)  is satisfied with constants c=1 and n0 = 3.  

Hence ��� = O(���).  

So far we have '()��   <   �� <   ��	 <   ���  <  ���   , and we need to put ���� � in its proper place. 

Comparing ���� � with ��, note that their values are equal when a = log� � or n = *�. But for all values of n 

> *�, we have �� < ���� �. So we have our values n0 = *� and c = 1 for which ���� � will be asymptotically 

larger for all n > n0. We can also take the log of both sides and see that log� ���� � = �log� ��/  which grows 

faster than log� �� = * log� � (Since log � is asymptotically larger than constants). 

Hence �� = O(�'()� �) 

Now to compare ���� � with *�, we can take the log (with base a) on both sides and see log� ���� �� = 

�log� ��/ and log� *� = nlog� * = n. We know that  �log ��/ grows slower than n (see a proof of this on 

page 57 of the textbook).  

So �'()�= O(��).  

 

Our final ordering is therefore       '()� �   <   �� <  �'()�  <   ��	 <   ��� <  ���   

where f(n) < g(n) is used here as shorthand for f(n) = O(g(n)), or equivalently, g(n) =  Ω(f(n)). 



Problem 3: (Solutions by Yun Lu) 

Find a function f(n) and a function g(n) such that f(n) ≠ O(g(n)), f(n) ≠ Ω(g(n)), and f(n) ≠ Θ(g(n)). Explain 

your answer in detail. 

According to the definition, 0�1� = 2�3�1��, if there exist constants  1� and c>0 such that 0�1� ≤ 53�1� 
for all 1 ≥ 1�.   

Consider the following functions  0�1� and 3�1�: 

0�1� = 71, 1	�9	:;:�
1, 1	�9	<==  

3�1� = 7 1, 1	�9	<==
1, 1	�9	:;:� 

There are no constants c and 1� to make either 0�1� = 2�3�1�� or 3�1� = 2�0�1�� hold. The reason for 

this is that no matter how much the input size x grows, 0�1� < 3�1� for even 1’s, 3�1� < 0�1� for odd 1’s, 

and the difference between 0�1� and 3�1�, 0�1�	– 	3�1� 	= 	±	�1 − 1�, keeps increasing alternating from a 

positive to a negative difference for odd and even 1’s, as 1 goes to infinity. Hence, no constants 5 and 1� 

exist that would make either 0�1� ≤ 53�1� or 3�1� ≤ 50�1� for all  1 ≥ 1� . 

Below is the runtime plot for 0�1� and 3�1�: 

 

 

Note: There many other pairs of functions f(n) and g(n) that satisfy the conditions of this problem, that is 

that their asymptotic growth are incomparable. So this is not the only possible solution to this problem. 
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Problem 4: (Solutions by Artem Gritsenko) 

 

Write a formal mathematical proof of the following property of Big-O:  

Transitivity of Big-Oh: If A��� 	= 	B�C���� and C��� 	= 	B�D���� then A��� 	= 	B�D����.  
 

Solution: 

 

To show that Big-Oh is transitive, we must show that for all functions 0���, 3��� and ℎ���, if 0��� is 

2�3���� and 3��� is 2�ℎ���� then 0��� is 2�ℎ����. Assume that 0��� 	= 	2�3���� and 3��� =
	2�ℎ����. 

• Since 0��� 	= 	2�3����, there exist constants 1n  and 1c  such that )()( 1 ngcnf ≤  for all 

1nn ≥  

• Since 3��� 	= 	2�ℎ����, there exist constants 2n  and 2c  such that )()( 2 nhcng ≤  for all 

2nn ≥ .  

Let 0n be the maximum of 1n and 2n  and let 21ccc = . Then, for all 0nn ≥  )()( 1 ngcnf ≤ and 

)()( 2 nhcng ≤ , so )()()( 21 nchnhccnf =≤ . Therefore, 0��� 	= 	2�ℎ����. 
 

 

 

Note: 

For the solution of this problem, you need to use the definition of Big-Oh as we did above. You 

cannot prove this problem by using the limits rule. The limits rule provides sufficient conditions, 

not necessary conditions. That is, 

IF you know that lim�→�
F���
G��� exists and that this limit is 0, THEN you can conclude that 

0��� 	= 	2�3����. 
But it doesn’t necessarily work the other way around. That is, if you know that 0��� 	= 	2�3���) 
you cannot conclude that lim�→�

F���
G��� even exists. 

  



Problem 5: (Solutions by Yun Lu) 

 

Table 5-1: Input sizes and corresponding runtimes for different sorting algorithms. Here c1 = 0.0000003 and 

c2 = 0.0000008; c1 n2 and c2 n log(n) are showing here for illustration purposes only. Throughout these 

homework solutions, log base e is used (that is, ln).  Random quickSort was not part of the HW, but it is 

included here so that you can learn this variant of quicksort (where the pivot element is chosen at random). 

Plot 5-1 illustrates the fact that bubbleSort, insertionSort, mergeSort, and quickSort are O(n
2
).  

 

Plot 5-1: Runtime (in seconds) VS input size for different sorting algorithms. Here c = 0.0000003. 

Plot 5-1a shows a tighter upper bound for mergeSort, c*n*log(n). 
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    n     

bubbleSort insertionSort mergeSort quickSort cccc1111    nnnn
2222
    cccc2222    n log(n)n log(n)n log(n)n log(n)    Random_quickSort 

1000 0.26260 0.18678 0.00734 0.08859 0.3 0.007973 0.00461 

2000 1.04449 0.67136 0.01513 0.38994 1.2 0.017545 0.01322 

3000 2.20468 1.51443 0.02451 0.87549 2.7 0.027722 0.01863 

4000 4.02151 2.58445 0.03525 1.40696 4.8 0.038291 0.02891 

5000 6.22779 4.11279 0.04501 2.13173 7.5 0.049151 0.03450 

6000 8.80387 5.95739 0.05439 3.04104 10.8 0.060244 0.03957 

7000 11.99891 8.00732 0.06489 4.22379 14.7 0.07153 0.05278 

8000 15.60927 10.43232 0.07623 5.55496 19.2 0.083981 0.06729 

9000 19.68651 13.43139 0.08703 6.98035 24.3 0.094577 0.07174 

10000 24.24205 16.79881 0.09781 8.66589 30 0.106302 0.07912 



 

Plot 5-1a: Runtime (in seconds) of MergeSort and asymptotic upper bound c*n*log(n), c = 0.0000008. 

The plots above provide trend lines calculated with Excel and with Matlab, for illustration purposes 

only. Table 5-2 shows the asymptotic growth behavior of the sorting methods under consideration, 

as discussed in the textbook (Chapters 2 and 7), and on the website that provides the Python 

implementation of the sorting methods used in this homework: 

http://interactivepython.org/courselib/static/pythonds/SortSearch/sorting.html 

 Asymptotic Upper Bounds 

BubbleSort O(n
2
) 

InsertionSort O(n
2
) 

MergeSort O(n log(n)) 

QuickSort O(n
2
) 

Table 5-2: Asymptotic upper bounds of different sorting algorithms 

Notes: 

• In the homework, the input list is in decreasing order. After sorting, the list will be in increasing 

order. This provides a worst case scenario for (most of) these search methods. 

• Note that in this HW solutions, we added a variation of quicksort, called Random quicksort 

here, by selecting one of the elements from list[first] and list[last] at random. We then, 

exchange this elements with list[first] so that the original code will use this randomly selected 

element as the pivot element.  

position = random.randint(first, last) 

temp = alist[first] 

alist[first] = alist[position] 

alist[position]= temp 
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The running time for random quicksort, quicksort and mergesort are shown below: 

 

 

Plot 5-2: Runtime comparison for random quickSort, quickSort and mergeSort. The curves for random 

quicksort and mergeSort overlap in this plot. See Plot 5-3. 

 

Since the curves for random quicksort and mergeSort overlap in Plot 5-2, we depict these curves a 

more refined level of granularity in Plot 5-3. It is worth noticing that since random quicksort is a 

randomized algorithm, its running time will vary based on the pivot selected in each recursion. But, 

we still could see that the running time is O(nlogn). 

 

 

Plot 5-3: Runtime comparison of random quicksort  and mergesort 
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The table and plot below contain runtime values obtained running the same code on a CS Unix server, a 

more powerful machine than my own laptop.  

 bubbleSort insertionSort mergeSort quickSort 

1000 0.16 0.11 0 0.06 

2000 0.6 0.43 0.01 0.22 

3000 1.47 0.99 0.02 0.48 

4000 2.61 1.77 0.02 0.86 

5000 4.07 2.79 0.03 1.33 

6000 5.86 4.02 0.03 1.92 

7000 7.97 5.48 0.04 2.6 

8000 10.43 7.16 0.05 3.41 

9000 13.17 9.08 0.05 4.31 

10000 16.28 11.22 0.06 5.32 
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