CS2223 Algorithms B Term 2013

Exam 1. November 15, 2013 - SOLUTIONS

By Prof. Carolina Ruiz Dept. of Computer Science Worcester Polytechnic Institute

Instructions:

- Show your work and justify your answers
- Use the space provided to write your answers
- Ask in case of doubt

Problem I. [15 Points] Asymptotic Growth of Functions.

Prove in detail that for any constant $a \ge 0$: $n^a log(n) = O(n^{a+1})$. Show your work.

Solution: For illustration purposes, we include two alternative solutions.

Solution 1: using the definition of Big-Oh:

We need to find constants c > 0 and $n_0 > 0$ such that for all $n \ge n_0$, $n^a \log(n) \le c n^{a+1}$.

Note that since $a \geq 0$ and n > 0 then $n^a > 0$. Also, we know that for all n > 0, $\log(n) \leq n$. Hence, $n^a \log(n) \leq n^a n = n^{a+1}$. Therefore for constants c = 1 and $n_0 = 1$, we have that for all $n \geq n_0$, $n^a \log(n) \leq c n^{a+1}$. Hence, $n^a \log(n) = O(n^{a+1})$.

Solution 2: using the limit rule:

$$\lim_{n\to\infty} \frac{n^{a}\log(n)}{n^{a+1}} = \lim_{n\to\infty} \frac{\log(n)}{n} = \lim_{n\to\infty} \frac{1/n}{1} \text{ (using de L'Hôpital's rule)} = 0$$

Since this limit exists and is equal to 0, then $n^{a}log(n) = O(n^{a+1})$.

Problem II. [30 points] Runtime Analysis

The bubleSort algorithm receives a list as its input and returns this list sorted in increasing order. (Algorithm below adapted from http://interactivepython.org/courselib/static/pythonds/SortSearch/sorting.html)

def bubbleSort(alist): Cost per instruction Number of repetitions $\ldots \ldots c_1 \ldots \ldots \ldots \ldots$ 1. n = length(alist) 2. for j in [n-1, n-2, ..., 1]: $\dots \dots n-1 \dots \dots$ $\ldots c_2 \ldots c_2$ for i in [0, 1, 2, ..., i-1]: $\dots n(n-1)/2 \dots$ 3. $\dots \dots C_3 \dots \dots$ if alist[i] > alist[i+1]: $\ldots \ldots C_4 \ldots \ldots$ $\dots n(n-1)/2 \dots$ 4. $\dots n(n-1)/2 \dots$ 5. temp = alist[i] $\dots n(n-1)/2 \dots$ \dots C_6 \dots C_6 6. alist[i] = alist[i+1] $\dots n(n-1)/2 \dots$ 7. alist[i+1] = temp $\ldots \ldots C_7 \ldots \ldots$ 8. return(alist) $\ldots \ldots c_8 \ldots \ldots \ldots \ldots 1 \ldots \ldots 1$

- 1. [20 Points] Use worst case analysis to construct a function T(n) that gives the runtime of this algorithm as a function of n, the length of the input list. Notes:
 - Instructions 1 and 8: Assume that they are executed in constant time (as shown above).
 - Java's equivalent of instruction 2 is: for (int j = n-1; j >= 1; j--)
 - Java's equivalent of instruction 3 is: for (int i = 0; i < j; i++)

Show your work step by step, and justify your answer.

Solution: We describe below our runtime analysis instruction by instruction:

- **1.** Provided in the problem statement: constant time.
- 2. j varies from n-1 to 1, so the condition of this loop is executed n-1 times. If we follow the textbook convention we'd add 1, for a total of n, to include the final check of the loop condition.
- 3-7 i varies from 0 to j-1. So the number of times that this loop is executed is:

$$j = n-1$$
: $i = 0, 1, ..., n-4, n-3, n-2$: $n-1 \text{ times}$ (= j times) $j = n-2$: $i = 0, 1, ..., n-4, n-3$: $n-2 \text{ times}$ (= j times) $j = n-3$: $i = 0, 1, ..., n-4$: $n-3 \text{ times}$ (= j times) $j = 1$: $i = 0$: 1 time (= j times)

Hence, the total number of times that each of these instructions is executed is $\sum_{j=1}^{n-1} j = \frac{(n-1)n}{2}$.

Note: If we follow the convention in the textbook that the condition of the loop is executed 1 more time that the body of the loop (and hence each row count in the tabulation above will be incremented by 1) the number of times that instruction 3 would be executed is:

$$\sum_{j=2}^{n} j = \frac{(n+1)n}{2} - 1 = \frac{(n+2)(n-1)}{2}$$

8. Provided in the problem statement: constant time.

Hence,
$$T(n)=c_1+c_2(n-1)+(c_3+c_4+c_5+c_6+c_7)\frac{(n-1)n}{2}+c_8=k_2n^2+k_1n+k_0$$
 for constants $k_0=c_1-c_2+c_8$; $k_1=c_2-\frac{c_3+c_4+c_5+c_6+c_7}{2}$; $k_2=\frac{c_3+c_4+c_5+c_6+c_7}{2}$.

2. [10 points] Provide an asymptotic upper bound g(n) as tight as possible for your T(n) function above and prove in detail that T(n) = O(g(n)).

Solution: Let $g(n) = n^2$.

Claim:
$$T(n) = k_2 n^2 + k_1 n + k_0 = O(n^2)$$

<u>Proof:</u> We need to find constants c>0 and $n_0>0$ such that for all $n\geq n_0$, $T(n)\leq c\ g(n)$. Note that $k_1n\leq k_1n^2$ and $k_0\leq k_0n^2$ for all $n\geq 1$. Take $c=k_0+k_1+k_2$ and $n_0=1$. Then,

for all
$$n \ge n_0$$
, $T(n) \le c g(n)$, and so $T(n) = O(g(n)) = O(n^2)$.

Problem III. [25 points] Transpose Symmetry of Big-O and Big-Omega

Let f(n) and g(n) be asymptotically positive functions. Use the definition of Big-O and Big-Omega to prove in detail that

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$

1. [10 points] Prove that if f(n) = O(g(n)) then $g(n) = \Omega(f(n))$.

Solution:

If f(n) = O(g(n)), then there exist constants c > 0 and $n_0 > 0$ such that for all $n \ge n_0$, $f(n) \le c \ g(n)$. Take $k = \frac{1}{c}$. Since c > 0 then k > 0. Note that for all $n \ge n_0$, $kf(n) \le g(n)$ and so $g(n) = \Omega(f(n))$.

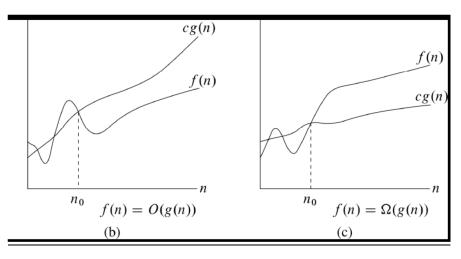
2. [10 points] Prove that if $g(n) = \Omega(f(n))$ then f(n) = O(g(n)).

Solution:

If $g(n)=\Omega(f(n))$, then there exist constants k>0 and $n_0>0$ such that for all $n\geq n_0$, $g(n)\geq k$ f(n). Take $c=\frac{1}{k}$. Since k>0 then c>0. Note that for all $n\geq n_0$, $f(n)\leq cg(n)$ and so, f(n)=O(g(n)).

3. [5 points] Explain in words and with plots what it means intuitively for a function f(n) to be O(g(n)) or for f(n) to be O(g(n)).

Solution: Graphs taken for the textbook: T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (Third Edition). MIT Press. 2009. f(n) = O(g(n)) means that for large enough n's, a constant multiple of g(n) is an upper bound for f(n). In other words, the growth rate of g(n) is greater than or equal to that of f(n) as n goes to infinite. Similarly, $f(n) = \Omega(g(n))$ means



that for large enough n's, a constant multiple of g(n) is a lower bound for f(n). In other words, the growth rate of g(n) is smaller than or equal to that of f(n) when n goes to infinite.

Problem IV. [35 Points] Asymptotic Growth of Functions.

Consider the following functions:

$$f_1(n) = 3^n$$

$$f_2(n) = 7$$
 (that is, $f_2(n)$ is a constant function that always returns 7).

$$f_3(n) = n^5$$

1. [5 points] List the above functions in ascending order of growth rate. That is, if function g(n) immediately follows function f(n) in your list, then it should be the case that f(n) = O(g(n)).

Your list: **Solution:**
$$7 < n^5 < 3^n$$

2. [20 points] Prove in detail that your list is correct. That is, prove that f(n) = O(g(n)) for every pair of functions f(n) and g(n), where g(n) immediately follows f(n) on your list above.

Solutions:

We provide 2 alternative proofs of each result, but one proof suffices.

Proof:
$$7 = O(n^5)$$
:

Proof using the definition of Big-Oh:

Take
$$c=7, n_0=1$$
. Then, for all $n \ge n_0$: $7 \le c \, n^5$, and so $7=O(n^5)$.

Note also that $n^5 \neq O(7)$ since there are no constants c > 0, $n_0 > 0$ such that $n^5 \leq 7c$ for all $n \geq n_0$. As a consequence of this, $n^5 \neq O(7)$.

Proof using the limit rule:

$$\lim_{n \to \infty} \frac{7}{n^5} = 0$$
. Hence, $7 = O(n^5)$ and $n^5 \neq O(7)$.

Proof:
$$n^5 = O(3^n)$$
:

Proof using the limit rule:

$$\lim_{n\to\infty} \frac{n^5}{3^n} = \lim_{n\to\infty} \frac{5n^4}{\ln(3)*3^n}$$
 (using de L'Hôpital's rule) =

$$\lim_{n\to\infty}\frac{5*4*3*2*1}{\ln(3)^5*3^n} \text{(using de L'Hôpital's rule 4 more times)} = 0.$$

Hence,
$$n^5 = O(3^n)$$
 and $3^n \neq O(n^5)$. As a consequence of this, $3^n \neq O(n^5)$.

Proof using the definition of Big-Oh:

We need to find constants c>0, $n_0>0$ such that $n^5\leq c*3^n$ for all $n\geq n_0$.

Take c=1 and $n_0=27$. Note that for all $n\geq n_0$, $5*log_3(n)\leq n$. Therefore $3^{5*log_3(n)}\leq 3^n$, and so $3^{log_3(n^5)}\leq 3^n$ which implies that $n^5\leq 3^n$ as we wanted.

3. [10 points] Are there any pairs of functions f(n) and g(n) from your list above that satisfy $f(n) = \Theta(g(n))$? Prove your answer.

Solution: No, there are no functions f(n) and g(n) from the list above that satisfy $f(n) = \Theta(g(n))$. We have already proven this explicitly when using the Limit Rule in our proofs in part 2 above.