
CS2223 in Four Pages∗

1. Algorithmic Strategies. We study five main algorithmic strategies.
These are ways to organize a computation that can be used across a variety
of problem areas.

Breadth-First Traversal Given a starting point and some graph struc-
ture, we explore nodes in order of their distance from the starting
point (counting by hops). The resulting data structure summarizes
the distances, for nodes reachable from the starting point.

Depth-First Traversal Given a graph structure, we explore all nodes ac-
cessible from a given node before finishing with that node. Result-
ing data structure has start and finish “times.” Key property is the
parenthesis property : If node n2 is discovered after n1, but before n1 is
finished, then n2 is finished before n1: d(n1) < d(n2) < f(n1) implies
d(n1) < d(n2) < f(n2) < f(n1).

Greedy Algorithms In a greedy algorithm, an optimal solution to a prob-
lem is built from optimal solutions to its independent subproblems.
After choosing an ordering of the subproblems, we simply choose the
best permissible payoff for each subproblem as we encounter it.

Dynamic Programming To construct an optimal solution to a problem,
we combine two or more optimal solutions to (possibly overlapping)
subproblems. The main task is to choose an operator describing the
optimal solution as a function of the optimal solutions to subproblems.
This operator is a “knowledge extension operator,” since it tells us
how to extend our knowledge of how to solve some subproblems to
learn how to solve others. Dynamic programming stores the successive
optimal solutions into a memo table, from which the operator efficiently
constructs later optimal values.

∗Joshua Guttman, FL 137, mailto:guttman@wpi.edu. Include [cs2223] in the subject
field. Version of October 25, 2012.

1

mailto:guttman@wpi.edu


Divide and Conquer Given a large data object, we break it into smaller
pieces and recursively solve the same problem on one or all of the
pieces. We then combine the solutions for the pieces.

2. Problem Areas. These main areas give us examples:

Sorting Insertion sort and bubble sort are very simple. Their asymptotic
complexity of O(n2) is worse than merge sort, but they are often quite
useful for arrays that are small or already almost sorted.

Merge sort and quicksort are divide-and-conquer algorithms for sorting
arrays. Merge sort has the better worst-case asymptotic complexity of
O(n log n). However, quicksort at O(n2) is generally somewhat faster
for most kinds of data, unless the data is already almost sorted (or in
reverse order). Heapsort is asymptotically as good as merge sort, and
is the simplest algorithm using a priority queue.

Graphs Breadth-first search finds connected components in an undirected
graph, can check if it is bipartite. Depth-first search finds cycles and
the connected components in a directed graph.

Dijkstra’s algorithm finds shortest paths greedily from a given starting
point in a graph with weighted edges. Bellman-Ford is a dynamic
programming algorithm. It uses shortest paths with at most k edges
to produce shortest paths with up to k + 1 edges. Unlike Dijkstra’s
algorithm, Bellman-Ford works when edges may have negative weights.

Prim’s algorithm and Kruskal’s algorithm are two greedy algorithms
for finding a minimum spanning tree in a weighted graph.

Scheduling and Optimization Various small optimization problems il-
lustrate greedy algorithms and dynamic programming.

Codes Huffman codes represent symbols by bitstrings of differing lengths
depending on their frequencies. A classic greedy algorithm, it main-
tains a heap to examine the symbols in order of increasing frequency.

Preference and Choice The Gale-Shapley algorithm is a greedy algo-
rithm that constructs matchings that are stable, meaning no pair of
participants would agree on a change. Shapley just won the Nobel
prize for economics.

Biology also provides some nice examples of dynamic programming.

2



3. Data Structures. We concentrate on a few data structures. A table
is a data structure that associates keys or tags with values. An array k is a
table in which the keys are integers, and form a sequence 1, . . . , k.

A string is really the same as an array, except that its values are char-
acters or bytes that can be packed into contiguous memory.

In a priority queue, we can efficiently find and extract a minimal element
relative to some ordering.1 A priority queue is usually represented by a heap,
namely a binary tree stored in an array, regarding entries 2i and 2i + 1 as
the left and right children of entry i. Many algorithms require that the
ordering depend on information that will change as the algorithm runs;
Prim’s algorithm is an example.

We may briefly discuss hash tables, using chaining to resolve collisions,
and binary search trees.

Graphs are represented using an array of adjacency lists, containing the
edges from a node to all of its neighbors or successors. Graphs can also be
represented by their adjacency matrices, a two-dimensional array defining
the edges. A data structure is defined in terms of its:

Interface, a set of procedures that produce data of this kind, combine or
modify them, and extract information from them;

Representation, the strategy for implementing the data structure in terms
of more primitive objects; and

Invariants, the properties that are true of every instance of the data type,
and are always preserved when data objects are modified or combined.

Taking priority queues as an example, its interface includes procedures to
make an empty priority queue, to insert a new value, to extract that top
value, and so on. It is represented as an array, with the left and right children
of entry i stored at positions 2i and 2i + 1. Its invariant is that the key of
the parent is always less than or equal to the key of either child, using the
heap’s comparison function.

4. Evaluating Algorithms. We consider both experimental and analytic
evaluations of algorithms.

Experimental Experimental evaluations include measuring runtimes for
many algorithms and sizes of problems. In some cases, we get a clear
indication of the algorithm’s runtime across different problem sizes.

1It is sometimes regarded as a maximal element relative to the reverse ordering.

3



In other cases, it is more reliable to count the number of times that
some critical operation is executed. In sorting algorithms and in algo-
rithms using priority queues, we used the number of comparisons in
the ordering of data objects as the events to count.

Analytical We also estimate the cost of an algorithm using big-O or Θ
notation. When a function f is asymptotically bounded by a function
g, to within some multiplicative constant c, we write f ∈ O(g). When
each of two functions f, g asymptotically bounds the other, to within
multiplicative constants c1, c2, we write f ∈ Θ(g).

We classify algorithms by the function that describes worst-case run-
time as a function of the input size x. An algorithm is intractable un-
less its worst-case runtime f(x) is bounded by some polynomial p(x),
i.e. f(x) ∈ O(p(x)). The degree of the bounding polynomial is crucial,
and should be very small. Logarithms give intermediate levels. Almost
all the algorithms we discuss here fit in one of the classes:

Θ(1) Θ(log x) Θ(x) Θ(x log x) Θ(x2) Θ(x2 log x) Θ(x3)

if there’s a single measure x of the size of the problem instance. In
some cases, we use two different factors for the input size, for instance,
with graphs, the number of vertices V and the number of edges E.

When we can predict the structure of an algorithm’s recursive calls, we
can make a recursion tree. It represents the cost of running an algo-
rithm in relation to all the costs of its recursive calls on subproblems.
It also includes the cost of combining the answers to subproblems.
The recursion tree suggests a recurrence relation or summation ex-
pression, which can be solved using a few tricks summarized in the
master theorem.

4


