
CS2223, HW4:

Dynamic Programming and Recurrences∗

Feel free to work in groups, discuss, debate, and dissect this homework.
More enjoyable, and good for learning. Problem A follows on from Problem
B in the last homework.

Even though I’m out of town Weds–Fri, the TAs/SA are available, and
I’m available via email on the weekend.

A. A Dynamic Algorithm. Unfortunately, the Golden Smacks finance
people decide that the projects are not all of equal value. They ask you to
rewrite your algorithm using the procedure payoff(p) to compute the value
of a project p.

You know to use a dynamic algorithm for this kind of problem.
Assume your projects are already sorted in the projects[] array in the

same order you chose in B.1.
To find the subproblems to solve a given problem, you need to know the

last compatible predecessor of any job j. The procedure prev_compat finds
the largest index i < j in projects[] such that projects[i] is compatible
with projects[j]. It returns −1 if there is none.

The worst case runtime of prev_compat is ∈ Θ(log2 k), where k is the
length of the vector projects[].

A.1. Choosing Subproblems. Suppose that you knew the optimal
values opt(i) for each subset of the projects of the form

projects[0],. . . , projects[i].

Give a recursive condition that tells how to compute opt(i+1) using this
information and the payoff function.

∗Due: Sunday night, 2 Dec.

1



Answer. Let f(i+1) = 0 if prev compat(i+1) = −1, and let f(i+1) =
opt(prev compat(i + 1)) otherwise.

opt(i + 1) = max(opt(i), payoff(projects[i + 1]) + f(i + 1))

A.2. Pseudocode. Write pseudocode to fill in an array M that stores,
for each M[i], the optimal value that you can achieve using compatible
projects selected from

projects[0],. . . , projects[i].

Answer.

M[0] = payoff(projects[0]);

for i from 1 to k-1 {
prev = prev_compat(i);

if prev = -1 {
prev_opt = 0

} else {
prev_opt = M[prev]

};
M[i] = max(M[i-1], payoff(projects[i])+M[prev])

}

A.3. Pseudocode to Determine Project List Modify or add to
your pseudocode so that it will compute not just the optimal payoff from
compatible jobs, but also computes the list of projects to accept to achieve
the optimal payoff.

Answer. Work backwards from k. Whenever M [i] = M [i − 1], just
print out the solution for i−1. Whenever M [i] = M [prev compat(i)]+projects[i],
first print the solution for prev compat(i), and then print i.

A.4. Estimate Runtime. Estimate the runtime for your code from
A.2 by choosing a f such that it will complete in time Θ(f(k)). You may
assume that the procedure call to payoff completes in constant time. How-
ever, be sure to reflect the time that may be required for the call to your
code in prev compat.

2



Answer. If the runtime of prev compat is ∈ Θ(log2 k), the runtime
will be ∈ Θ(k log2 k).

Some Problems from CLRS.

Sec. 4.1 Do exercises 4.1-1, 4.1-4, p. 74. (Related to project 4.)

Sec. 4.4 Do exercises 4.4-1, 4.4-2, 4.4-3, 4.4-4, p. 92.

Sec. 15.1 On pp. 370, do exercises 15.1-3, 15.1-4, 15.1-5.

Sec. 15.4 On pp. 390, do exercises 15.4-1, 15.4-2, 15.4-4, 15.4-5.

3


