
CS2102, B12

Exam 1

Name:

You have 50 minutes to complete the problems on the following pages. There should be sufficient space provided for
your answers.

If a problem asks you to create a class hierarchy, we are looking for the interfaces, classes, and abstract classes that
you would create for the problem. In particular:

• Include implements and extends statements

• Include field names and types

• Include method headers (names, return type, and input parameter types)

• Full credit requires that all types and implements/extends relationships are clear. Be sure your work is clear if
you use class diagrams instead of Java syntax.

• You may omit constructors

• You may omit method bodies

• You may omit the Examples class (examples of data and test cases) unless a question asks otherwise

1



Grading Summary
Exam starts on the next page

Topic Max Points Score
Q1: Set-based data structures 30
Q2: When to use interfaces 7
Q2: Java abstraction mechanisms 7
Q2: Create a class hierarchy 15
Q2: Protect data from access/modification 15
Q3: Encapsulate data 30

(exam starts on the next page)

2



1. Topic: Data Structures
Draw an example (pictures, not code) of each of the following:

(a) A heap containing the numbers 1 through 7 that is NOT a binary search tree (BST)

(b) A binary search tree (BST) containing the numbers 1 through 7 that is NOT an AVL tree

(c) A binary search tree (BST) in which the left subtree has height 2, the right subtree has height 3, but the
BST is not an AVL tree (Hint: numbers 1 through 6 are enough to answer this)

(exam continues next page)

3



2. Topic: Class Hierarchies (Classes, Abstract Classes, Interfaces) and Access Modifiers
You are developing an application to help people manage their meetings and to-do lists (question 3 starts from
the same code). The application contains the following classes (constructors omitted to save space):

class Date {
________ String month;
________ int day;

}

class Meeting {
________ String description;
________ Date when;
________ String location;

}

class Calendar {
________ LinkedList<Meeting> meetings;
________ LinkedList<String> toDoList;

// produce list of appointments on the given date
LinkedList<Meeting> getReminders(Date fordate) {

LinkedList<Meeting> result = new LinkedList<Meeting>();
for (Meeting m:meetings) {
if (m.when.day==fordate.day && m.when.month.equals(fordate.month)) {

result.addFirst(m);
}

}
return result;

}

// check off a to-do list item
void finishToDo(String toDoItem) {

this.toDoList.remove(toDoItem);
}

}

After the initial product release, you realize that your application needs to manage scheduled phone calls as well
as in-person meetings. For each phone call, you need to store a description of what the call is about, the date for
the call (ignore the time to simplify the problem), the number to call, and the name of the person to call.

(a) How could the original code have been written differently to let you make this change without editing any
of the existing classes? Answer in text (do not write code or edit the above code).

(exam continues next page)

4



(b) Edit the code to replace the current LinkedList of meetings with a LinkedList containing both
meetings and phone calls. If you introduce any new classes, provide class definitions to the same level of
detail as the Date and Meeting classes. Provide any new interfaces in full; you only need to reproduce
the original functionality (not add new features or methods). Do NOT encapsulate data for this question—
just make the edit requested in this problem. Mark edits on the original code, using the space around the
code and below for any new classes/interfaces.

(c) Fill in the blanks in the code with appropriate access modifiers that would also allow the code to compile
as written. You do not need to write anything else for this part.

(exam continues next page)

5



3. Topic: Encapsulation
You are developing an application to help people manage their meetings and to-do lists (question 2 starts from
the same code). For this question, use the code in its original form, NOT with any edits made in question 2.

class Date {
String month;
int day;

}

class Meeting {
String description;
Date when;
String location;

}

class Calendar {
LinkedList<Meeting> meetings;
LinkedList<String> toDoList;

// produce list of appointments on the given date
LinkedList<Meeting> getReminders(Date fordate) {

LinkedList<Meeting> result = new LinkedList<Meeting>();
for (Meeting m:meetings) {
if (m.when.day==fordate.day && m.when.month.equals(fordate.month)) {

result.addFirst(m);
}

}
return result;

}

// check off a to-do list item
void finishToDo(String toDoItem) {

this.toDoList.remove(toDoItem);
}

}

(a) On the code itself, box off the code fragments that need to change in order to encapsulate the meetings
data in the Calendar class. You only need to draw boxes to answer this part.

(exam continues next page)

6



(b) Provide classes and/or interfaces you would add in order to encapsulate the meetings data. Provide
complete interfaces. For classes, provide variables and headers for methods that are not required by their
interface. Include only variables and method headers needed to encapsulate the code on the previous page
(don’t add new features).

(c) Would well-encapsulated code require any changes to the comparison of dates in the getReminders
method? Either explain needed changes briefly in text or justify why no changes are necessary (you do not
need to write or edit code).

(end of exam)

7


