
CS2102: Lecture on Abstract
Classes and Inheritance

Kathi Fisler

How to Use These Slides

These slides walk you through how to share common
code (i.e., create helper methods) across classes

• I recommend you download the starter file (posted
to the website) and make the edits in the slides, step
by step, to see what happens for yourself

• In the slides, green highlights what changed in the
code from the previous slide; yellow highlights show
Java compile errors

• Note any questions, and ask on the board or in the
lecture-time chat

class Dillo implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return 2 <= this.length &&

 this.length <= 3 ;

 }

}

class Boa implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return 5 <= this.length &&

 this.length <= 10 ;

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

} Notice the almost identical code

Back to the Animals (code we had on Thursday)

class Dillo implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return 2 <= this.length &&

 this.length <= 3 ;

 }

}

class Boa implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return 5 <= this.length &&

 this.length <= 10 ;

 }

}

We should create a helper
method, but where can we

put it? (remember, all
methods must be in a class)

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

} Notice the almost identical code

class Dillo implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return 2 <= this.length &&

 this.length <= 3 ;

 }

}

class Boa implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return 5 <= this.length &&

 this.length <= 10 ;

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

class AbsAnimal {

}

We will create a new class that
abstracts over the common

features of Dillo and Boa.

We’ll call the new class
AbsAnimal

(“abs” for abstract)

class Dillo implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return 2 <= this.length &&

 this.length <= 3 ;

 }

}

class Boa implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return 5 <= this.length &&

 this.length <= 10 ;

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

class AbsAnimal {

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

We will put a helper method for
isNormalSize in AbsAnimal.

We call the helper

isLenWithin; it takes the
varying low and high values as
inputs (but otherwise copies
the common code, as usual

when making a helper)

class AbsAnimal {

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

class Boa implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Next, we rewrite the original
isNormalSize methods to

call the helper method

class AbsAnimal {

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

class Boa implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

This is the right idea, but if we
compile the Dillo and Boa

classes, Java will complain that
isLenWithin isn’t defined.

class AbsAnimal {

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

class Boa implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

This is the right idea, but if we
compile the Dillo and Boa

classes, Java will complain that
isLenWithin isn’t defined.

The problem is that we never
connected Dillo and Boa to

AbsAnimal.

class AbsAnimal {

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

class Boa extends AbsAnimal

 implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

We connect Dillo and Boa to
AbsAnimal using a new Java

keyword, extends, which says
that one class (Dillo/Boa)

includes the content of another
(AbsAnimal)

class AbsAnimal {

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

class Boa extends AbsAnimal

 implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Now, AbsAnimal won’t
compile; Java will say that it

doesn’t have a length variable.

class AbsAnimal {

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

class Boa extends AbsAnimal

 implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Now, AbsAnimal won’t
compile; Java will say that it

doesn’t have a length variable.

But note that the length
variable is also common to

Dillo and Boa. It should also
have moved to AbsAnimal

class AbsAnimal {

 int length;

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 int length;

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

class Boa extends AbsAnimal

 implements IAnimal {

 int length;

 String eats;

 Boa(int length, String eats) {

 this.length = length;

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Now, AbsAnimal won’t
compile; Java will say that it

doesn’t have a length variable.

But note that the length
variable is also common to

Dillo and Boa. It should also
have moved to AbsAnimal

class AbsAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 this.length = length;

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

We need to add a constructor
to AbsAnimal, and have it set

the value of length

[For sake of space, we will hide
the Boa class (edits to Dillo

apply to Boa as well)]

Notice that we removed the
length variable from Dillo

class AbsAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

We need to add a constructor
to AbsAnimal, and have it set

the value of length

Notice that we removed the
length variable from Dillo

 The Dillo constructor needs
to send the length value to
the AbsAnimal constructor

class AbsAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

In Java, super refers to the
constructor for the class that

this class extends; inside
Dillo, super calls the
AbsAnimal constructor.

Notice that we removed the
length variable from Dillo

 The Dillo constructor needs
to send the length value to
the AbsAnimal constructor

class AbsAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

In Java, super refers to the
constructor for the class that

this class extends; inside
Dillo, super calls the
AbsAnimal constructor.

Whenever a class extends
another class, its constructor

should call super before doing
anything else (i.e., the call to
super should be the first
statement in the method)

class AbsAnimal implements IAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal

 implements IAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Almost done. Since Dillo and
Boa both implement

IAnimal, we can move that to
AbsAnimal as well

class AbsAnimal implements IAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Here’s the final code

class Boa extends AbsAnimal {

 String eats;

 Boa(int length, String eats) {

 super(length);

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

Recap so far

• When multiple classes need to share code (such as a
helper method), put that code in a (parent) class that
the sharing classes each extends

• Common variables and implements statements also
move to the parent class

• If a class extends another class, its constructor should
call super (to properly set up the contents of the
superclass)

• Classes can use all variables and methods in their
superclass

Facts about Extends

• Terminology: If class A extends class B, then (1) B is the
superclass of A; (2) A is a subclass of B; (3) A is also said to
inherit from B

• Restrictions: A class may have at most one superclass (ie, only
extends one class), but arbitrarily many subclasses. [In
contrast, a class can implement arbitrarily many interfaces.]

• Behavior: A class has access to all variables and methods of its
superclass (there are exceptions, but we will discuss those later)

• Behavior: A class cannot access the variables or methods of its
subclasses

BUT THERE ARE STILL SOME ISSUES
TO ADDRESS …

class AbsAnimal implements IAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

What if someone writes
new AbsAnimal(8)?

What kind of animal does this

yield?

class Boa extends AbsAnimal {

 String eats;

 Boa(int length, String eats) {

 super(length);

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

class AbsAnimal implements IAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

What if someone writes
new AbsAnimal(8)?

What kind of animal does this

yield?

It doesn’t yield any known (or
meaningful) kind of animal.
AbsAnimal is only meant to
hold code, it shouldn’t be used

to create objects.

We’d like to tell Java not to let
anyone create objects from

AbsAnimal

class Boa extends AbsAnimal {

 String eats;

 Boa(int length, String eats) {

 super(length);

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

abstract class AbsAnimal

 implements IAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

class Dillo extends AbsAnimal {

 boolean isDead;

 Dillo(int length, boolean isDead) {

 super(length);

 this.isDead = isDead;

 }

 // determine whether this dillo's

 // length is between 2 and 3

 public boolean isNormalSize () {

 return isLenWithin(2,3);

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

To tell Java not to let anyone
create objects from a class, we

annotate the class with the
keyword abstract

Now, the expression
new AbsAnimal(8)

would raise a Java error

Rule of thumb: if a class only to
hold common code, make it

abstract class Boa extends AbsAnimal {

 String eats;

 Boa(int length, String eats) {

 super(length);

 this.eats = eats;

 }

 // determine whether this boa's

 // length is between 5 and 10

 public boolean isNormalSize () {

 return isLenWithin(5,10);

 }

}

WHY DO WE NEED BOTH AN
INTERFACE AND AN ABSTRACT
CLASS?

abstract class AbsAnimal

 implements IAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Interfaces and abstract classes
serve two very different

purposes

Interfaces are a form of types:
they capture what a class must
do, but they do not constrain
how the class does something.

As such, interfaces cannot
contain code (beyond method

input/output types) or variables

Abstract classes are for sharing
(abstracting over) data and

code across multiple classes;
they constrain how extending
classes organize and use data

Both roles are important, so OO
programs often use both

abstract class AbsAnimal

 implements IAnimal {

 int length;

 // constructor

 AbsAnimal(int length) {

 this.length = length;

 }

 // determine whether animal’s

 // length is between low and high

 boolean isLenWithin (int low,

 int high) {

 return low <= this.length &&

 this.length <= high ;

 }

}

interface IAnimal {

 // determine whether animal's length

 // is within normal boundaries

 boolean isNormalSize();

}

Interfaces and abstract classes
serve two very different

purposes

If you already know some Java,
you may have been taught to

overuse class extension instead
of interfaces. Interfaces are
proper OO design practice

(more on this through 2102)

Imagine that we wanted to add
fruit flies to our data. They are

too small to have a length.
Having IAnimal lets us write
isNormalSize (to always

return true) without having to
specify a meaningless length

value for a fruit fly.

What you should be able to do now …

• Use extends to share code among classes

• Use super in constructors

• Make a class abstract to prevent someone
from creating objects from it

• Choose between using interfaces and (abstract)
classes when designing programs

Some Study Questions

• Why didn’t we put isLenWithin in IAnimal?

• Can AbsAnimal refer to the eats variable of Boa?

• Could we have defined isNormalSize directly inside
of AbsAnimal, instead of writing isLenWithin? If
so, how?

• If we wanted to write a doesEatTofu method on Boa,
which class should it go into? Should it be mentioned in
IAnimal?

Experiments to Try on the Code

Edit the posted starter file with the code from these notes,
then experiment with the following:

• What error does Java give if you try to extend an

interface or implement an abstract class?

• What error does Java give if you try to access a subclass
variable in a superclass?

• If you forgot to delete the int length line from the
Dillo class (after adding it to AbsAnimal), what
would Java do?

