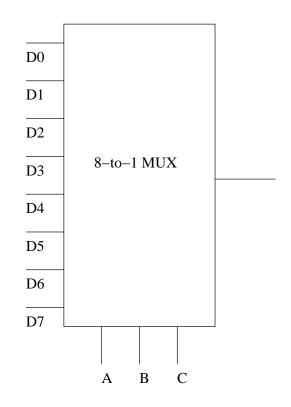
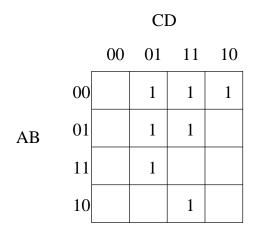
NAME:


USERNAME:

CS 2011 Exam 1 D-Term 2008

- Question 1: (10)
- Question 2: (20)
- Question 3: (15)
- Question 4: (20)
- Question 5: (20)
- Question 6: (15)
- TOTAL: _____ (100)

Fill in your name and username. DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO DO SO.


1. (10 points) In class, we saw how a function such as the majority function could be implemented by hard-wiring a multiplexer. Hard-wire the multiplexer pictured below so that it computes the following Boolean function: $P(A, B, C) = \overline{AB} + C$

- 2. (20 points) An 8-bit byte contains the hexadecimal value xF2. What decimal number does the byte represent if the value in the byte is
 - (a) an unsigned integer?
 - (b) a signed, two's-complement integer?

3. (15 points) Here's a 32-bit quantity expressed in hexadecimal: x41F20000. The number is in IEEE single-precision floating point. What decimal value does it represent? (Show all work for partial credit.)

4. Given the following Karnaugh map:

(a) (5 points) Write the sum-of-products equation from which this Karnaugh map is derived. (Don't provide a minimal function yet, just give the function that would lead to the Karnaugh map pictured above.)

- (b) (5 points) Put rectangles around the 1's in the given Karnaugh map to make a minimal mapping.
- (c) (5 points) Use your rectangles to write a minimal sum-of-products equation for the function P.

(d) (5 points) Draw the minimal circuit that corresponds to your equation from part (c).

- 5. (20 points)
 - (a) Write machine code instructions (machine code, not assembly language!) that will implement the following pseudo-code:

DO R2 = R2 + R1 R3 = R3 - 1 WHILE R3 != 0

- (b) An LDR instruction, located at location x3100, uses R6 as its base register. The value currently in R6 is x5000.
 - i. What is the largest address that the LDR instruction can load from?
 - ii. Suppose the offset in an LDR instruction is zero-extended, rather than signextended. Then what would be the largest address the LDR instruction could load from?

6. (15 points) At some instant in time, the state of the LC-3 is partially described by these register values and memory location contents (all given in hex):

PC:	x3100	Memory							
IR:	x0000	address	contents						
		x30FE:	x3103						
RO:	x0000	x30FF:	x3104						
R1:	x1111	x3100:	xB9FE						
R2:	x2222	x3101:	xCOCO						
R3:	x3333	x3102:	xF025						
R4:	x4444	x3103:	xABCD						
R5:	x5555	x3104:	x30FE						
R6:	x6666	x3105:	x2345						
R7:	x7777								
MAR:	x4000								
MDR:	x5000								

Assume the machine in this state is just about to fetch an instruction.

Give the series of micro-operations that show how the data above is transferred throughout the machine as a **single instruction** is fetched, decoded, and executed. Provide a comment for each step. For example, the first step is:

 $MAR \leftarrow x3100$;; MAR gets the current PC value

				12				8	7	6	5			2	1	0
ADD+	1		01		I	DR			SR1		0		0		SR2	2
ADD ⁺		00	01			DR		1	SR1		1	1	ii	nmŧ		
AND ⁺		01	01			DR			SR1		0	0	0		SR2	
AND ⁺		01	01			DR			SR1		1		ii	nm!	5	
BR		00	00		n	z	р				PC	offs	et9			
JMP		11	00		1	000			lase		I			000		
JSR		01	00		1			1			offse	et11				
JSRR		01	00		0	0	0	B	lase		I			000		
LD ⁺	1	00	10			DR					PC	offs	et9			
LDI+		10	10			DR					PC	offs	et9			
LDR+		01			1	DR			lase			I	offe	et6		
LEA ⁺	1	11	10		1	DR					I	offs				
NOT+		10	01			DR			SR					111		
RET	1	11	00		1	000		1	111					000		
RTI		10	00													
ST		00	11			SR					PC	offs	et9			
STI	1	10	11			SR				I	PC	offs	et9			
STR		01	1			SR			lase				offs	et6		
TRAP		11				00	00			I	t	rapv				
reserved		11	01							I		I	_			
L																