CS1102: The State Machine Simulation Language

Kathi Fisler, WPI
September 28, 2004

1 Introduction: What's a State Machine Simulator?

1.1 Example 1: Traffic Lights

Imagine that an engineering firm is designing new softwaredatrolling the sequence of lights displayed by a traffic
light. Given that a malfunctioning light could result in @&ents, they want to monitor whether the new design is
producing an expected (and acceptable) sequence of ligdtscoSuppose they sampled the current light color at
short, regular intervals. A sequence that cycled througlttiors in order, such as

red red green green yellow red red green yellow ...
matches the expected behavior of a traffic light. If, howgther monitor detected an out-of-order sequence, such as

red yellow red yellow yellow red ...

then the monitor should report that the design containsam.er
Our goal in this lecture is to create programs for defining anthing monitors. First, how might we define a
monitor (forget how to run it for the moment)? Here’s a commgeaphical notation (known asstate machine-you

may have heard the equivalent tefimite automatoh
gred

green

yellow
green
is-green
yellow

What does this notation mean?

AN

red

e The circles are known agtates they name the different valid configurations that a mordtmuld be in. For the

traffic light, the monitor can be seeing one of the three ligghors (red, yellow, or green); the states indicate the
color of the light at the last sampling.

e The arrows are known g@sansitions(or sometimedge$: they show relationships between valid configura-
tions. Notice that each arrow has a label on it. That labehiswn as aguard A transition indicates the
conditions under which the monitor can change configuration



For example, the transition froms-red to is-greenhas a guardyreen This indicates that if the monitor is
in the is-red configuration and sees a green light on the next sampling, tthee monitor enters this-green
configuration. Notice, however, that this is no transitieaMingis-redwith the guardyellow. That means that if
the monitor is in thes-red configuration and the light sampling shows yellow, then tloitor should report an
error (because something unexpected happened). The lackafsition matching the current sample always
indicates an error.

e The stubby arrow with nothing at its source marksdtarting configuration This example says that all traffic
lights start displaying a red light.

This example shows how we can use state machines to write dmamitors. Given a monitor as a state machine,
how do we run it to watch for errors? In addition to the moniteg need a list of the data sampled at each time. Assume
we had a way to remember the current configuration. We takéirgiesample off the list, change configurations by
matching the sample against the guards, and repeat on thefrie list. For example, assume we had the state
machine shown above and the sample list (red 'green 'green 'yellow). Then we would progress through the
samples and configurations as shown in the following tabledich line other than the first, the current configuration
is the next configuration from the previous line):

Sample list Current Configurationn Next Configuration
(list 'red 'green 'green 'yellow) is-red is-red

(list "green "green "yellow) is-red is-green

(list "green "yellow) is-green is-green

(list "yellow) is-green is-yellow
empty is-yellow OKAY (stop monitor)

Here’s an example of how the monitor progresses on an erasrsamuence of samples:

Sample list Current Configuration] Next Configuration
(list 'red 'red 'yellow ' green) is-red is-red

(list "red "yellow 'green) is-red is-red

(list "yellow ’green) is-red ERROR

Our task is to come up with a language for describing statehmaamonitors and to write an interpreter that
runs the monitors against a list of samples, mimicing théeahbove. The result of each run is eitb&ayor error,
accordingly.

1.2 Example 2: A Train-Safety Protocol

As a second monitor example, consider a simple messagitggaidor a railway signalman (human). The signalman
stands at one end of a very long tunnel. His input samplesaotitree kinds of messages: one from the operator at
the other end of the tunnel saying that a train has enteretimel {rain-entered, an observation that the train exits
the tunnel on his endsée-train-exit, and a messageoneif neither of other two messages are active. The operator
should flag an error if he ever getdrain-enteredmessage while he is still waiting for a train to exit the tulnfiéne
following state machine shows the monitor for this operaforotocol:

;::::) none

(Note: This example is part of a slightly larger example oéal protocol that people believed was working until
it resulted in a massive train crash in England back in thédE86look for details on the Clayton Tunnel accident
if you're interested. Protocol validation remains an intpat area of research in Computer Science, as a means of
detecting flaws before accidents occur in practice.)

\ train-entered

none

see-train-exit



2 A Language for Monitors

Now that you've seen two examples of monitors, let's devalgpon-graphical) language for writing them down and
an interpreter for running them. We'll use the traffic liglst #ne running example throughout these notes. Take a
few minutes, and try to develop the data definitions that yeedfor monitors. Do this before reading on (when I'l
present two different languages you might have proposed):

2.1 Language 1: The Structures Approach

As in the past, we can start by identifying the pieces thaingm describing a monitor, then write data definitions for
those pieces. What pieces do we have here? When we introtheesthte machine notation, we identified two kinds
of information: states and transitions (with guards). Hoiglmwe turn these into data definitions?

;; A state is a (make-state symbol list[transition])
(define-struct state(name trans-oy)

;; A transition is a (make-trans symbol symbol)
(define-structtrans(guard next-staty

;; A'monitor is a (make-monitor symbol list[state])
(define-struct monitor (init-state state

Using this approach, our traffic light would look like:

(define TL-monitor
(make-monitotis-red
(list (make-stateis-red (list (make-transred ’is-red)
(make-transgreen 'is-green)))
(make-stateis-green (list (make-transgreen ’is-green)
(make-transyellow 'is-yellow)))
(make-stateis-yellow (list (make-transyellow ’is-yellow)
(make-transred 'is-red))))))

How would the interpreter work? It would take the monitor éinéllist of samples and the current state as input. Given
the current state and the first sample, it would determinedix¢state (using a series of filters) and call the interprete
recursively with the rest of the sample and the the nexestatother words, the code skeleton would look like:

;; interp-monitor : monitor list[symbol}» symbol
;; run monitor on samples, returning 'okay or 'error
(define (interp-monitor a-monitor samplgs
(run-monitor(monitor-init-state a-monitgr
samples
(monitor-states a-monitg))

;; run-monitor : symbol list[symbol] list[states} symbol
;; run monitor on samples from current state, returning Yos&'error
(define (run-monitor curr-state samples all-stajes
(cond [(empty? samplésokay]
[(cons? samplgs
(let ([next-stategfind-next-state curr-stat@irst sampleyall-stateg])
(cond[(boolean? next-stajéerror]
[else(run-monitor next-statérest samplesall-stateg]))]))

;; find-next-state : symbol symbol list[state] symbol or false
;; finds name of next-state in transition from given statet(firg) on given input/guard (second arg)

Exercise: Write find-next-statéhint: usefilter)



2.2 Language 2: The Functions Approach

We can also capture monitors using functions to represatdgsst Why might this make sense? We can view each
state as a delayed computation that’s just waiting for antihe current sample). Each state waits for an input (the
sample), then calls the next state (a function) on the retsteofamples.

What might the language definition look like in this framek/®r

;; A run-output is either 'error or 'okay

;; A state is a function (list[symbol}> run-output)
;; (where the input is a list of samples)

;; A monitor is a state (the initial state)
Using this approach, we could define our traffic light as:

(define TL-monitor
(local [(define (is-red samples
(cond[(empty? samplgsokay]
[(cons? samplgs
(cond[(symbok? (first sampley’red) (is-red (rest sampleg]
[(symbok? (first sampley’ green) (is-green(rest sampleg]
[else’error])]))
(define (is-yellow samplés
(cond[(empty? samplgsokay]
[(cons? samplgs
(cond[(symbok? (first sampley’yellow) (is-yellow(rest sampleg]
[(symbok? (first sampley’red) (is-red (rest sampleg]
[else’error])]))
(define (is-green samplgs
(cond [(empty? samplgsokay]
[(cons? samplgs
(cond [(symbok? (first sample¥’ green) (is-green(rest sampleg]
[(symbok? (first sampley’ yellow) (is-yellow(rest sampleg]
[else’error])]))]
is-red))
How would we write the interpreter for the second definitioMe monitor is now just a function that expects to
receive a list of samples. Given a list of samples, we simplysghem to the monitor function (the initial function),
which in turn calls all the other functions for the other statintil the list of samples becomes empty.

;; interp-monitor : monitor list{symbol}- run-output

;; run monitor on samples, returning 'okay or ‘error

(define (interp-monitor a-monitor samplgs
(a-monitor samplé3

This example illustrates how your choice of data definitiong language can dramatically change the amount of work
needed to run programs in the language.

2.3 Which Language Design is Better?

We've now seen two rather different language definitionse based on structures and one based on functions. The
two different definitions ofnterp-monitorsuggest that these give rise to rather different languagéementations,
but let’s try to characterize the differences more clearly:



Differences in Design Style

e The structure-based definition is purelyntactic— it captured the information in the monitor (states and-tran
sitions) as explicit structures, then left the interprétefigure out what those structures mean (that’s why it's
called an interpreter). This is the same style that we usedpture slides (in class) and animations (in lab).

e The function-based definition exploits some knowledge aldat a monitordoes— it goes beyond what the
notation looks like and also considers what the notatiohlwelused for (in other words, it takes teemantics
of the monitors into account, rather than just siyatay. This style leaves less work forterp-monitor because
much of the work gets buried in the definition of the moniteelf—the monitotSalready a (Scheme) program
that runs itself!

This is a substantial distinction, one that you can see lgiéaithe different definitions ofnterp-monitor For the
function-based approachmterp-monitordoesn’t really have much work to do, while that work is subttd in the
structure-based approach.

Differences in Flexibility

What if we wanted to write additional software over monit@tsch as a tool that uses a monitor to generate (acceptable
or erroneous) sequences (test cases) rather than check Weroould write such a program over the structure-based
definition. The function-based definition, on the other hamdustomized to the original problem, so it supports fewer
new applications over monitors. Given the importance oflfiéigy in software design, why would anyone choose the
function-based approach?

Differences in Performance

The function-based version will executeuchfaster than the structure-based version on a large examfoley?
Because the interpreter for the structures has to do all tir& of filtering through the states to find the next states
and the transitions. In the function-based version, thg oomputational work lies in the cond, which will be much
cheaper than the filters. In real-world practice, speed igmiost importance in monitoring and testing software, so
that makes a strong case for the function-based approach.

2.4 Summary of Comparison

There is no clear answer to the question of which design ishédt depends on the constraints of the real application
you are building. In general, the structure-based versiasgou flexibility at a cost penalty, while the functionsea
version gives you performance with a loss of reuse. You simeéd to understand the requirements of your particular
application to make this decision.

3 A Technical Note: Interpreters Versus Compilers
Technically, we can summarize the differences betweentbestyles as follows:

e The structure-based approach implements the monitor &gegthrough arninterpreter As a reminder, an
interpreter is a program that consumes a program (in this @ashe monitor language) as input and returns the
result of running that program (therror or 'okay).

e The function-based approach implements the monitor laggytiarough aompiler A compiler is a program
that consumes a program (in some language) and producegraprin another language; the produced (output)
program is run to yield the result of running the originalgram. In this case, we served as the compiler: we
manually represented the monitor language as a programhiense, then ran the Scheme program to get the
result (the érror or 'okay). If we'd designed a custom notation for writing down monipwograms, instead of



relying on the graphical notation, the program that took timdation and produced the Scheme program would
be called the compiler.

For those of you who have heard that compilation is fastem thterpretation, our discussion of the differences in
performance between the two approaches supports this.claim

Warning

Some of you have no doubt heard the phrase “X is a compiledibgey or “Y is an interpreted language”. These
phrases araon-sensicaland show a certain gap in your training. “Interpreted” oorfpiled” are attributes of the
implementationnot of thelanguage ANY language can be interpreted or compiled (we've seenexaenple here).

It's certainly true that some languages are more often implged via interpreters as opposed to compilers, and vice-
versa, but that decision is not intrinsic to the languagthéa it arises from the application for which the language
was defined). Don’t make the mistake of using these phraséss@iof course you recant your WPI degree first ...).



