
Developing Programs for
Family Trees

c. Kathi Fisler, 2001

Susan

Pat Mike

Tom

Ann Joe

Mary

Consider the following family tree:

Assuming we want to write programs to query
who is in the tree or to count how many
generations are in the tree, what data model
could we use?

Susan

Pat Mike

Tom

Ann Joe

Mary

Consider the following family tree:

• Names
• Info about people (name, father, mother)

Need to represent:

(Will ignore other info, like birthday, for now)

Susan

Pat Mike

Tom

Ann Joe

Mary

Consider the following family tree:

• Names
• Info about people (name, father, mother)

Need to represent:
(use symbols)

(use structures)

Data Model for Family Trees

(define-struct person (name father mother))

• A family tree (ftree) is
(make-person symbol ftree ftree)

How about:

[Try making a family tree with this definition]

Making Family Trees

(define-struct person (name father mother))

• A family tree (ftree) is
(make-person symbol ftree ftree)

(make-person ‘Mary
(make-person ‘Joe)
(make-person ‘Ann

(make-person ‘Tom …)
(make-person ‘Susan …)))

What goes
here?

Making Family Trees

(define-struct person (name father mother))

• A family tree (ftree) is
(make-person symbol ftree ftree)

(make-person ‘Mary
(make-person ‘Joe)
(make-person ‘Ann

(make-person ‘Tom …)
(make-person ‘Susan …)))

What goes
here?

Follow the
data

definition!
Must use a

make-person

A Broken Family Tree Data Model

• Definition requires each parent to be a whole
person, with a father and mother (who are
also make-persons …)

• The definition doesn’t allow finite trees!

General rule: every recursive data definition
needs at least one non-recursive case (ie, a case
with no arrows or with a finite chain of arrows)

• A family tree (ftree) is either
– ‘unknown
– (make-person symbol ftree ftree)

A New Data Model for Family Trees

(define-struct person (name father mother))

[Try making a family tree with this definition]

[notice this case has no arrows]

Sample Family Trees
• ‘Hallie

• (make-person ‘Mary
‘unknown
(make-person ‘Ann ‘unknown ‘unknown))

• (make-person ‘Bernie
(make-person ‘Fred

(make-person ‘Bubba
‘unknown
‘unknown)

‘unknown))
(make-person ‘Lisa ‘unknown ‘unknown))

Programs on Family Trees

;; ftree-func : ftree ! ???
(define (ftree-func aftree)

…)

How much of this program can you write
based on the data definition? [Try it]

Suppose we want to write a program on family
trees, but I don’t tell you which one …

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

…)

What kind of data definition does ftree have?

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [… …]
[… …]))

What kind of data definition does ftree have?
one based on (two) cases …

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [… …]
[… …]))

What questions differentiate the cases?

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree) …]))

What questions differentiate the cases?

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree) …]))

What other information is available in each case?

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree) …]))

What other information is available in each case?
none in the symbol? case

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree)
(person-name aftree) …
(person-father aftree) …
(person-mother aftree) …]))

What other information is available in each case?
selectors in the person? case

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree)
(person-name aftree) …
(person-father aftree) …
(person-mother aftree) …]))

What about the arrows in the data definition?

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree)
(person-name aftree) …
(ftree-func (person-father aftree))…
(ftree-func (person-mother aftree)) …]))

What about the arrows in the data definition?
add recursive calls

Template on Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree)
(person-name aftree) …
(ftree-func (person-father aftree))…
(ftree-func (person-mother aftree)) …]))

This is the full template for programs over
family trees

Practice Problems on Family Trees

• ;; count-generations : ftree ! number
;; return the number of generations in a tree

• ;; in-family? : ftree name ! boolean
;; determines whether name appears in tree

[try each in turn]

count-generations : Solution
;; count-gen : ftree ! number
;; counts generations in a family tree
(define (count-gen aftree)

(cond [(symbol? aftree) 0]
[(person? aftree)
(+ 1

(max (count-gen (person-father aftree))
(count-gen

(person-mother aftree))))]))

[the blue text is what we added to the template]

in-family? : Solution
;; in-family? : ftree name ! boolean
;; determines whether name appears in tree
(define (in-family? aftree aname)

(cond [(symbol? aftree) false]
[(person? aftree)
(or (symbol=? (person-name aftree) aname)

(in-family? (person-father aftree) aname)
(in-family? (person-mother aftree) aname))]))

Augmenting the Model

Programmers often augment their initial data
models as the problem evolves.

We want to augment our family tree model with
information on birth-year and eye-color

How would you change the model?

Revised Model, Version 1

(define-struct person (name year eye father mother))

• A family tree (ftree) is either
– ‘unknown
– (make-person name number symbol ftree ftree)

Revised Model, Version 2

(define-struct person (data father mother))
(define-struct info (name year eye))

• An info is a (make-info name number symbol)

• A family tree (ftree) is either
– ‘unknown
– (make-person info ftree ftree)

Which Model is Better?
• Model 1 is a little simpler, because it has

fewer data definitions (and fewer arrows)

• Model 2 is more flexible, because we can add
new info about a person without changing the
data definition or template for people

Model 2 is probably a better choice in the long run

[develop a template for model 2]

Template on Revised Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree)
(info-func (person-data aftree)) …
(ftree-func (person-father aftree))…
(ftree-func (person-mother aftree)) …]))

;; info-func : info ! ???
(define (info-func an-info)

(info-name an-info) …
(info-year an-info) …
(info-eye an-info))

Notice we now have two
template functions,

because we have two
complex data definitions

Template on Revised Family Trees
;; ftree-func : ftree ! ???
(define (ftree-func aftree)

(cond [(symbol? aftree) …]
[(person? aftree)
(info-func (person-data aftree)) …
(ftree-func (person-father aftree))…
(ftree-func (person-mother aftree)) …]))

;; info-func : info ! ???
(define (info-func an-info)

(info-name an-info) …
(info-year an-info) …
(info-eye an-info))

Notice that the recursive
calls match the arrows
in the data definition!

(3 arrows, 3 calls)

Templates become truly useful
(even invaluable) when data

definitions get long or refer to each
other (ie, have many arrows

crossing between them)

We expect you to use them.

Practice Problems on Family Trees 2
• ;; count-blue-eyed : ftree ! number

;; return number of blue-eyed people in tree

• ;; has-old-and-blue? : ftree number ! boolean
;; determines whether tree contains a blue-eyed
;; person born before given year

• ;; gather-green-eyed : ftree ! list[name]
;; construct list of names of green-eyed people

[try each in turn]

has-old-and-blue? : Solution
;; has-old-and-blue? : ftree num ! boolean
(define (has-old-and-blue? aftree yr)

(cond [(symbol? aftree) false]
[(person? aftree)
(or (old-and-blue? (person-data aftree) yr)

(has-old-and-blue? (person-father aftree) yr)
(has-old-and-blue? (person-mother aftree) yr)))]))

;; old-and-blue? : info number ! boolean
;; true if person has blue eyes and was born before given year
(define (old-and-blue? an-info born-before)

(and (< (info-year an-info) born-before)
(symbol=? ‘blue (info-eye an-info))))

Descendant Family Trees

• Current model is ancestor-based : each person
refers to her parents.

• Hard to access information about someone’s
children

• Let’s create a new model in which parents refer
to their children instead of the other way around

• A parent is a structure
(make-parent symbol number symbol list-of-children)

• A list-of-children is either
– empty, or
– (cons parent list-of-children)

Descendant Family Trees: Data Defn

(define-struct parent (name year eye children))

[where do we need arrows?]

• A parent is a structure
(make-parent symbol number symbol list-of-children)

• A list-of-children is either
– empty, or
– (cons parent list-of-children)

Descendant Family Trees: Data Defn

(define-struct parent (name year eye children))

[try writing examples from this data defn]

• (define Marypar (make-parent ‘Mary 1975 ‘blue empty))

• (make-parent
‘Susan
1925
‘green
(cons (make-parent

‘Ann 1943 ‘blue (cons Marypar empty))
(cons (make-parent ‘Pat 1949 empty)

empty)))

Descendant Family Trees: Examples

• A parent is a structure
(make-parent symbol number symbol list-of-children)

• A list-of-children is either
– empty, or
– (cons parent list-of-children)

Descendant Family Trees: Data Defn

(define-struct parent (name year eye children))

[try writing the template for this data defn]

Descendant Family Trees : Template
;; pfunc : parent ! ???
(define (p-func a-parent)

(parent-name a-parent) ...
(parent-year a-parent) ...
(parent-eye-color a-parent) ...
(loc-func (parent-children a-parent)) ...)

;; loc-func : list-of-children ! ???
(define (loc-func a-loc)

(cond [(empty? a-loc) ...]
[(cons? a-loc) ...

(p-func (first a-loc)) ...
(loc-func (rest a-loc)) ...]))

Again, one call to a
template function
per arrow in the

data defn

Practice on Desc. Family Trees
• ;; count-blue-eyed : parent ! number

;; return number of blue-eyed desc from parent

• ;; has-old-and-blue? : ftree number ! boolean
;; determines whether tree contains a blue-eyed
;; person born before given year

[try each in turn]

count-blue-eyed : Solution 1
;; count-blue-eyed : parent ! number
(define (count-blue-eyed a-parent)

(cond [(symbol=? ‘blue (parent-eye-color a-parent))
(+ 1 (count-blue-kids (parent-children a-parent)))]

[else (count-blue-kids (parent-children a-parent))]))

;; count-blue-kids : list-of-children ! number
(define (count-blue-kids a-loc)

(cond [(empty? a-loc) 0]
[(cons? a-loc)
(+ (count-blue-eyed (first a-loc))

(count-blue-kids (rest a-loc)))]))

count-blue-eyed : Solution 2
;; count-blue-eyed : parent ! number
(define (count-blue-eyed a-parent)

(cond [(symbol=? ‘blue (parent-eye-color a-parent))
(+ 1 (count-blue-kids (parent-children a-parent)))]

[else (count-blue-kids (parent-children a-parent))]))

;; count-blue-kids : list-of-children ! number
(define (count-blue-kids a-loc)

(foldr 0 (lambda (kid result-rest)
(+ (count-blue-eyed kid)

(count-blue-kids (rest a-loc))))
a-loc))

Why Did We Create All These
Variations on Models?

• This is how real world program development works.
– You develop a simple model,
– figure out how to solve your problem there,
– then augment the model with new features
– or redesign the model if necessary.
Many programs on the simple models can be reused with just

a little modification. And you get to think out your
problem in stages, rather than all at once.

• We will be doing this model-refinement routine on
languages later in the course.

Summary: where are we in the course?
We are done learning Scheme. We have covered how to

write programs using
– conditionals
– structures
– lists
– trees

These, plus data definitions and templates, give you all of
the Scheme programming tools that you need for the
course.

Next week, we start studying programming languages.

