
Overview of Web Programming

Kathi Fisler, WPI

October 4, 2004

1 The Problem of Web Programming

This lecture looks at programming for web scripts and some ofthe challenges it raises. Web sites (such as travel
sites and onine stores) are often notoriously buggy, even when developed by reputable companies. This suggests that
interesting web scripts are somehow complicated to get right. In this lecture, we’re going to try to draw analogies
between web programs and the non-web programs that you writeto try to understand what’s difficult about writing
web scripts.

• Boxes on forms correspond to requesting inputs (likeread in Scheme).

• Web pages/scripts are like functions: they request a numberof inputs from a user and perform some operations
on the input, possibly calling other functions (pages/scripts) for additional processing.

• Pressing buttons on web pages calls functions.

Where does this analogy break down?Unlike functions, web scripts terminate as soon as they havepassed their
form inputs to the next script.The user must press a (submit) button to continue the computation. Furthermore,
one script never “returns” a computation to a previous script; in contrast, you rely on one function returning data to
another all the time. The implication then is that you have tochange how you write programs when you implement
web programs.

Let’s illustrate this with a simple example. Suppose you wanted to write a program that asks a user to input their
age, then displays some information about their ability to vote. Keeping with the idea that we need one page to request
input, then another to display the output, we might write a Scheme version of this program as follows:1

;; request-age-page :→ void
;; prompts user to input their age
(define(request-age-page)

(begin (printf "Enter your age: ")
(read)))

;; age-page-nonweb :→ void
;; displays ability to vote based on user’s age
(define(age-page-nonweb)

(local ((defineage(request-age-page)))
(cond [(>= age18) (printf "Don’t forget to vote!")]

[else(printf "You’ll be able to vote in ˜a years" (− 18 age))])))

If this were a real web program, the user would get a page with abox in which to enter their age and a submit button.
Pressing submit would bring up a new page with the appropriate message from the cond statement. Running it in
Scheme would yield the following interaction:

1we will write our web programs in Scheme because not everyonein the class knows CGI or PHP programming. It’s not hard to translate these
programs into equivalent ones in your favorite web programming language.

1



> (age-page-nonweb)
Enter your age:16
You’ ll be able to vote in2 years

This program has functions that correspond to pages in a web program. Those functions don’t follow the termi-
nation behavior of web scripts though. We said that web scripts print out pages, read inputs, and then terminate. The
request-age-pageappears to do that (since nothing happens after theread). Terminate is a stronger condition though:
web programs don’t even return control flow back to the programs that called them!

In order to study web programs through Scheme, we need a way todefine scripts that look like Scheme functions,
but abort when they are done, rather than returning to the programs that called them. This is a change to the way
Scheme usually handles functions, so we need a macro for defining scripts. The following code achieves this task.
I do not expect you to understand how this macro works — just copy it into your Scheme file when you are
experimenting with scripts. (Of course, if youwant to know how it works, stop by my office sometime.)

(define abort#f)
(let/cc grab-abort

(set! abort grab-abort))

(define-syntax define-script
(syntax-rules()

[(define-script (script-name arg. . . ) body)
(define(script-name arg. . . )

(abort body))]))

Let’s use the new macro to define our age program as scripts instead of scheme functions. To do this, change
define to define-script on both functions (I also edited the name of the main functionso we can tell them apart).

;; request-age-page-script :→ void
;; prompts user to input their age
(define-script (request-age-page-script)

(begin (printf "Enter your age: ")
(read)))

;; age-page :→ void
;; displays ability to vote based on user’s age
(define-script (age-page-web)

(local ((defineage(request-age-page-script)))
(cond [(>= age18) (printf "Don’t forget to vote!")]

[else(printf "You’ll be able to vote in ˜a years" (− 18 age))])))

Now, let’s run the program again. The script version should yield the same answers as the original version:

> (age-page)
Enter your age:

What happened? Therequest-age-page-scriptprogram aborted as soon as it finished, rather than return control to the
age-pageprogram. Thelocal in age-page-webnever finished, because the program aborted at the end ofrequest-age-
page-script.

This is the problem of programming on the web. Perhaps this looks bizarre to you, but this really is how web
scripts work in practice. Over the next three classes, we will show you how to program in this style, and a step-by-step
process you can follow to convert programs to ones that will work as scripts.

2 Fixing the Age-Page Program

Let’s try to figure out how to fix the script versions of theage-pageprogram so that they behave the same way as the
original program. If we want thelocal to execute, we have to make sure it gets invoked beforerequest-age-page-script

2



terminates. One obvious way to do this is to move thelocal insiderequest-age-page-script, as follows:

;; request-age-page-script :→ void
;; prompts user to input their age
(define-script (request-age-page-script)

(begin (printf "Enter your age: ")
(local ((defineage(read)))

(cond [(>= age18) (printf "Don’t forget to vote!")]
[else(printf "You’ll be able to vote in ˜a years" (− 18 age))]))))

;; age-page :→ void
;; displays ability to vote based on user’s age
(define-script (age-page)

(request-age-page-script))

This violates the spirit of web scripts though, because scripts are only supposed to request inputs or display messages
based on information entered in previous pages. Put anotherway, by putting thelocal in the same function as the
request for input, we’ve taken out the “submit” button from the web page. We need another way to do this.

We said earlier that submit buttons resemble calling functions. Let’s capture this in the code my moving thelocal
into another script that gets called after we ask the user forinput:

;; submit-age :→ void
;; reads the age the user entered and displays the voting status
(define-script (submit-age age)

(cond [(>= age18) (printf "Don’t forget to vote!")]
[else(printf "You’ll be able to vote in ˜a years" (− 18 age))]))

;; request-age-page-script :→ void
;; prompts user to input their age
(define-script (request-age-page-script)

(begin (printf "Enter your age: ")
(submit-age(read))))

;; age-page :→ void
;; displays ability to vote based on user’s age
(define-script (age-page)

(request-age-page-script))

Running this version yields the desired interaction:

> (age-page)
Enter your age:16
You’ ll be able to vote in2 years

Why did this version work? Notice that beforerequest-age-page-scriptcan terminate, it must callsubmit-age, which
continues the computation. Thesubmit-agescript displays the voting information to the user, then aborts. Control
never gets back torequest-age-page-script, but that’s okay, because it didn’t have more work to do anyway! This
example illustrates how to program for the web: each script calls another script to continue the computation just
before it would otherwise terminate. No other computation can depend on the answer from a script.

3 Adding Numbers

Imagine that we wanted to write a web program to request two numbers, one on each of two web pages, and produce
their sum on a third web page. Let’s try to write sufficient scripts for this example. We’ll start with a conventional
version of the program.

3



;; request-num1-page :→ number
;; requests the first number
(define(request-num1-page)

(begin (printf "Enter first number: ")
(read)))

;; request-num2-page :→ number
;; requests the second number
(define(request-num2-page)

(begin (printf "Enter second number: ")
(read)))

;; adder-page :→ void
;; requests two numbers from user and displays their sum
(define(adder-page)

(local ((definen1 (request-num1-page)))
(local ((definen2 (request-num2-page)))

(printf "sum: ˜a˜n" (+ n1 n2)))))

To convert this to a web program, we need to make sure that eachrequest page starts the next stage of the computation
before it finishes, and we need to change eachdefine to define-script. In the age program, we sent eachread to a
submitfunction that continued the computation. Let’s do the same here:

;; request-num1-page :→ number
;; requests the first number
(define-script (request-num1-page)

(begin (printf "Enter first number: ")
(submit1(read))))

What shouldsubmit1do? If we look at the originaladder-pagefunction, after we request the first number we request
the second number (and send it off to a script as well)

(define(submit1 n1)
(begin (printf "Enter second number: ")

(submit2(read))))

What shouldsubmit2do? Since both numbers have been requested, it can now print the sum:

(define-script (submit2 n2)
(printf "sum: ˜a˜n" (+ n1 n2)))

Running this version yields the following interaction:

> (adder-page-web)
Enter first number:5
Enter second number:8

[BUG] reference to undefined identifier: n1

Where’s the problem? Notice thatsubmit2tries to print the sum ofn1 andn2, but it doesn’t haven1 (which was
read in as part ofsubmit1). To fix this, we passn1along as a parameter tosubmit2:

;; adder-page-web :→ void
;; requests the first number
(define(adder-page-web)

(begin (printf "Enter first number: ")
(submit1(read))))

4



;; submit1 : number→ void
;; requests the second number
(define(submit1 n1)

(begin (printf "Enter second number: ")
(submit2 n1(read))))

;; submit2 : number number→ void
;; get second number from user and display sum
(define-script (submit2 n1 n2)

(printf "sum: ˜a˜n" (+ n1 n2)))

This version runs as expected.
For those of you with web programming experience,n1 would be handled as a hidden variable. HTML supports

hidden variables for precisely this reason: breaking programs into web scripts requires a way to pass values between
scripts.

4 Onward

We’ve seen a couple of simple examples of converting programs to the web. The problem gets harder when the
programs involve more conditionals, recursive functions,and other features. You’ll see how to address these problems
systematically as we continue with this topic.

5


