CS1102: Adding Error Checking to Macros

Kathi Fisler, WPI
October 6, 2008

1 Typos in State Machines

The point of creating macros for state machines is to hidguage details from the programmer. Ideally, a programmer
shouldn’t need to know anything more than the macro inputissyim order to write down usable state machines. Recall
our macro for converting the clean state machine syntaximgstructure-based language:

(define-syntax monitorl
(syntax-rules(->:)
[(monitorl inithame
(curr-state: (label-> next-statg...)

o)
(make-monitor
"inithame
(list (make-statecurr-state (list (make-translabel ' next-state)
.2)
))))

This macro is designed to work with the following interprrefte testing state machine monitors against sequences
of inputs:

;; interp-monitor : monitor listfsymbol}» symbol
;; run monitor on samples, returning 'okay or 'error
(define (interp-monitor a-monitor samplgs
(run-monitor(monitor-init-state a-monitgr
samples
(monitor-states a-monitQy)

;; run-monitor : symbol list[symbol] list[states} symbol
;; run monitor on samples from current state, returning Yos@'error
(define (run-monitor curr-state samples all-stajes
(cond [(empty? samplésokay]
[(cons? samplgs
(let ([next-statefind-next-state curr-statffirst samplepall-stateg])
(cond [(boolean? next-stajéerror]
[else(run-monitor next-statérest samplesall-stateg]))]))

;; find-next-state : symbol symbol list[state] symbol or false
;; finds name of next-state in transition from given statest(firg) on given input/guard (second arg)
(define (find-next-state curr-state label stajes
(let ([state(first (filter (lambda (st) (symbo&? curr-state(state-name 3}) state3)])
(let ([trans(filter (lambda (tr) (symbok? label(trans-guard tp))
(state-transitions stajg])



(cond [(empty? tranksfalsd
[else(trans-next-statéfirst trang)]))))

Imagine that a programmer uses the macro as shown below,dik&sa typo in the first transition te-green(left
out one of the "e”"s in green). What happens when the progrartrias to test the state machine?

(definebuggy-TL-monitor
(monitorl is-red
(is-red: (green-> is-gren
(red -> is-red))
(is-green: (yellow-> is-yellow)
(green-> is-green)
(is-yellow: (red-> is-red))))

> (interp-monitor buggy-TL-monitdfist 'red 'green 'yellow ’green))
first: expects argument of typenon-empty list; given ()

This error comes from thénd-next-statdunction, specifically the call tdirst used to get a value for thetate
variable. Knowing how the macro and interpreter work, thiseemakes sense: the first sample(l) pulled out next-
stateis-gren which got passed as the current statéind-next-stateMakes sense to us, but a programmer shouldn’t
have to understand how our language works in order to useait iefeats the point of creating a language!). We've
provided a cute syntax for state machines, but we havenvigied the support tools that programmers should expect
from a useful language.

This general problem where the details underlying an implaation sneak out and become visible (and a headache)
for a programmer has been called "abstraction leakage”. |dd¢tares page has a link to a very nice piece on leaky
abstractions by software developer Joel Spolskyow can we plug the leak in our state-machine language?

2 Catching Typos in Next States

The cause of the error in this case is easy to explain: theanoger used a next-state name that was not the name of
any state in the same state machine. Given that the macesphts access to all of the names used for the states and
the next-states, we should be able to add some code to the thatwill check whether all the next-state names have
been used as state names.

Let’s start by adding some code to the macro that will collists of all the state names that got defined and all of
the next-state names that got used:

(define-syntax monitor2
(syntax-rules(->:)
[(monitor2 inithame
(curr-state: (label-> next-statg...)
.2)
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state . . .)]
[used-next-namd#ist 'next-state ... ... )]
2?7
;; build the monitor
(make-monitor

‘inithame
(list (make-statecurr-state (list (make-translabel ' next-state)
)]
D)

11 highly recommend his software development blagv. j oel onsof t war e. com



We need to use two sets of ellipses afised-next-statdsecause the next-state names are within two sets of ellipses
in the input pattern (one for the transitions and anothetiferstates).

Now that we have these two lists, we just need to write codictiacks whether every element of the next-state
listis in the list of states; if we find a next-state that is imathe list, produce an error message.

(define-syntax monitor2
(syntax-rules(->:)
[(monitor2 inithame
(curr-state: (label-> next-statg...)
.2)
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state . . .)]
[used-next-namdappend(list 'next-state ...) ...)])
(map(lambda (next-namg
(cond [(member next-name defined-state-ngrtres]
[else(error (format”Used undefined next-state name "a” next-namyp)))
used-next-namgs
;; build the monitor
(make-monitor

"inithame
(list (make-statécurr-state (list (make-translabel ' next-state)
..2)
D)

If we use this macro to create the buggy state machine, weyetilan error message before we even get to run the
interpreter:

Used undefined next-state name is-gren

3 Catching Typos in Labels

Now that we see how to catch typos in next states, it is woiitingsvhether there are any other kinds of errors that
we could check for in the macro. What about the labels on iians? That is another place where a programmer
might make a typo. Can we check for typos on labels the samengalid for next states?

Label typo checking is a little harder in our current macrdiéff we checked for typos in the next states, we had
names to compare them to: the names used to define the statetieid do we have a list of valid labels to check
against. If we want to support typo checking on labels, wé mégkd to add the names of valid labels to the macro.
Let’'s add that to the source syntax with a keywtrettk-labels

(define TL-monitor3
(monitor3 is-red(tracks-labelsred yellow greeh
(is-red: (green-> is-green
(red -> is-red))
(is-green: (yellow-> is-yellow)
(green-> is-green)
(is-yellow: (red-> is-red))))
First, let’s edit the input pattern to expect the new traleltrels statement. We need to adacks-labelsto the list
of keywords, and we need to add the pattern for it to the inpttepn.

(define-syntax monitor3
(syntax-rules(-> : tracks-labels)
[(monitor3 inithname(tracks-labelslabell. . .)



(curr-state: (label-> next-statg...)
.2)
(begin

;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state . . .)]

[used-next-namdappend(list 'next-state ...) ...)])

(map(lambda (next-namg
(cond [(member next-name defined-state-ngrtres]
[else(error (format”Used undefined next-state name “a” next-namyp)))
used-next-namgs

;; build the monitor
(make-monitor

‘inithame
(list (make-statécurr-state (list (make-translabel ' next-state)
)]
D)

Now, what do we want to do with the labels that we are trackikgg?want to do something similar to what we
did with the next-states, checking that each label that getlwn a transition was given as a label inttlaeks-labels
statement.

(define-syntax monitor3
(syntax-rules(-> : tracks-labels)
[(monitor3 inithame(tracks-labelslabell. . .)
(curr-state: (label-> next-statg...)

.2)
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state . . .)]
[used-next-namdappend(list 'next-state ...) ...)])
(map(lambda (next-namg
(cond [(member next-name defined-state-ngrtres]
[else(error (format”Used undefined next-state name "a” next-namg]))
used-next-namgs
;; check that all used label names are valid
(let ([defined-labelglist 'labell . ..)]
[used-labelgappend(list 'label ...) ...)])
(map(lambda (used-labél
(cond [(member used-label defined-labdlsie]
[else(error (format”Used undefined label name "a” used-labd)]))
used-labely
;; build the monitor
(make-monitor
‘inithame
(list (make-statecurr-state (list (make-translabel
'next-state)
)

)

With this macro, typos in the label names will also be repbttethe user before they try to test the state machine
with the interpreter.



4 A Little Cleanup

The macro now has two uses of very similar code for checkindyfoos in the next states and labels. If this were a
standalone program, we would create helper functions t@entre common code into one function. Macro output
isn't much different from a standalone program, so let'stimgame here. The resulting macro looks like:

(define-syntax monitor4
(syntax-rules(-> : tracks-labels)
[(monitor4 inithname(tracks-labelslabell...)
(curr-state: (label-> next-statg...)
oY)
(local [(define (confirm-names-in-list check-names in-list error-stjing
(map(lambda (nameg
(cond [(member name in-liytrue]
[else(error (format error-string namg]))
check-name}]
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢lst " curr-state . .. )]
[used-next-namdappend(list 'next-state ...) ...)])
(confirm-names-in-list
used-next-names defined-state-nathsed undefined next-state name "a"))
;; check that all used label names are valid
(let ([defined-labelglist 'labell . ..)]
[used-labelgappend(list 'label ...) ...)])
(confirm-names-in-list
used-labels defined-labeldsed undefined label name ~a”))
;; build the monitor
(make-monitor

‘inithame
(list (make-statécurr-state (list (make-translabel ' next-state)
)]
D)

Notice that we used local to define a function that takes tlodists to check and the error string to generate, then
called that helper function to perform the checks. This igifierent than what we would have done when creating
helper functions outside of the context of macros.

5 Summary
This lecture has tried to bring across two important points:

e When we define a language, we run the riskbétraction leakageThis occurs when implementation details of
the language are accidentally exposed to the programmeisusing the language. Abstraction leakage almost
always arises when a program contains errors (logical®rtypos, etc).

The leakage problem points to another caveat in softwaigmtedesigners are generally good at deciding how
to handle correct inputs, but don’t always think enough abow to gracefully handle incorrect inputs.

e Macros are really programs that produce other programs.c#ouput arbitrarily complex code into the output
part of the macro. The programmer never needs to know abisutdke. It just runs behind the scenes when
the programmer uses the macro. This shows that macros disemesch more than handy tools for replacing
one piece of code with another.



As a result of this lecture, | expect that you could

¢ |dentify some kinds of mistakes that programmers might niakesing a macro, and

¢ Implement simple kinds of error checking at the level thatdicehere.



