
Loops in Scheme, II

c. Kathi Fisler, 2001

(early slides assume map/filter)

Recap: filter and map

• filter and map are Scheme’s “loops”

– filter : (α ! boolean) list[α] ! list[α]
extract list of elts that satisfy a predicate

– map : (α ! β) list[α] ! list[β]
applies function to all elts, returning list of results

Recall sum
;; sum : list[num] ! num
;; adds up the elements of a list of numbers
(define (sum alon)

(cond [(empty? alon) 0]
[(cons? alon) (+ (first alon)

(sum (rest alon)))]))

Sum also loops; how to write it with filter/map?
[try it]

filter/map don’t work for sum

• Both return lists -- sum returns a number

• Sum requires another kind of loop

• We derived filter by looking at two
programs with similar structure and
abstracting the common parts into a helper
function …

sum and product

;; sum : list[num] ! num
;; adds elts of a list of nums
(define (sum alon)

(cond
[(empty? alon) 0]
[(cons? alon)
(+ (first alon)

(sum (rest alon)))]))

;; prod : list[num] ! num
;; multiplies list of nums
(define (prod alon)

(cond
[(empty? alon) 1]
[(cons? alon)
(* (first alon)

(prod (rest alon)))]))

Where do these two programs differ?

sum and product

;; sum : list[num] ! num
;; adds elts of a list of nums
(define (sum alon)

(cond
[(empty? alon) 0]
[(cons? alon)
(+ (first alon)

(sum (rest alon)))]))

;; prod : list[num] ! num
;; multiplies list of nums
(define (prod alon)

(cond
[(empty? alon) 1]
[(cons? alon)
(* (first alon)

(prod (rest alon)))]))

Make the blue parts parameters to a new function [try it]

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Write sum and product using newloop [try it]

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; sum : list[num] ! num
(define (sum alon)

(newloop + 0 alon)

;; prod : list[num] ! num
(define (prod alon)

(newloop * 1 alon)

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Write length (of a list) using newloop [try it]

base and alon arguments are easy … but combine …

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

What is combine’s contract? [try it]
;; combine :

(we see from its use that it takes two arguments)

!

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

What is combine’s contract?
;; combine :

What type is (first alon)?

!

A number, by contract

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

What is combine’s contract?
;; combine :

What type is (first alon)?

!

A number, by contract

num

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

What is combine’s contract?
;; combine :

What type is (newloop (rest alon))?

!

A number, by
contract

num

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

What is combine’s contract?
;; combine :

What type is (newloop (rest alon))?

!

A number, by
contract

num num

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

What is combine’s contract?
;; combine :

What does combine return?

!num num

A number
(by contract)

since
newloop

returns the
result of
combine

The “New Loop”
;; newloop : ? num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

What is combine’s contract?
;; combine :

What does combine return?

!

A number
(by contract)

since
newloop

returns the
result of
combine

num num num

The “New Loop”
;; newloop : (num num ! num) num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

So, combine has contract
;; combine : num num ! num

OK, but how do we write combine for length?

The “New Loop”
;; newloop : (num num ! num) num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Combine takes the first elt of the list and the result
of looping on the rest of the list. So, your combine
function determines how to put these together …

The “New Loop”
;; newloop : (num num ! num) num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; combine : num num ! num
(lambda (elt result-rest)

…)

(this naming
convention on combine
functions reminds you
what the args stand for)

The “New Loop”
;; newloop : (num num ! num) num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; combine : num num ! num
(lambda (elt result-rest)

(+ 1 result-rest))

For length, we don’t
care about the contents
of the elt, just that it
exists. Combine
therefore ignores elt.

The “New Loop”
;; newloop : (num num ! num) num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; length : list[α] ! num
(define (length alst)

(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

[stretch break]

But wait …
;; newloop : (num num ! num) num list[num] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; length : list[α] ! num
(define (length alst)

(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

The contracts
don’t match!

Fixing the newloop contract
;; newloop : (num num ! num) num list[α] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; length : list[α] ! num
(define (length alst)

(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

If we change
num to α,

what else must
change in the

newloop
contract?

Fixing the newloop contract
;; newloop : (num num ! num) num list[α] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; length : list[α] ! num
(define (length alst)

(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

Where is the α
processed in

newloop?

Fixing the newloop contract
;; newloop : (α num ! num) num list[α] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; length : list[α] ! num
(define (length alst)

(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

So the first
argument to

combine must
also be α

Fixing the newloop contract
;; newloop : (α num ! num) num list[α] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

;; length : list[α] ! num
(define (length alst)

(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

This fixes the
contract wrt
length; now

consider
newloop alone

Stepping back: newloop
;; newloop : (α num ! num) num list[α] ! num
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

• What in the definition of newloop requires it to
output a number? (newloop has no arith ops…)

• What if we wanted a loop that returned a boolean,
or a structure, or …?

Generalizing newloop
;; newloop : (α num ! num) num list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

Generalizing newloop
;; newloop : (α num ! num) num list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

Where does
the output of

newloop
come from?

Generalizing newloop
;; newloop : (α num ! num) num list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

Where are
these types

in the
contract?

Generalizing newloop
;; newloop : (α num ! β) β list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

Change these
types to β

Generalizing newloop
;; newloop : (α num ! β) β list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

What about that
lingering num?

(where is it
from)?

Generalizing newloop
;; newloop : (α num ! β) β list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

The num is the
second argument

to combine

Generalizing newloop
;; newloop : (α num ! β) β list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

But this value
comes from the

output of
newloop!

Generalizing newloop
;; newloop : (α β ! β) β list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Let’s change the contract to let newloop return a
value of any type.

What else in the contract must change to β?

So this num
must also

become a β

At long last …
;; newloop : (α β ! β) β list[α] ! β
(define (newloop combine base alon)

(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(newloop (rest alon)))]))

Actually, newloop is built-in. It’s called foldr

The foldr loop
;; foldr : (α β ! β) β list[α] ! β
(define (foldr combine base alst)

(cond [(empty? alst) base]
[(cons? alst)
(combine (first alst)

(foldr (rest alst)))]))

;; length : list[α] ! num
(define (length alst)

(foldr (lambda (elt result-rest) (+ 1 result-rest))
0 alon))

Phew!
• We now have three loops at our disposal:

– filter : (α ! boolean) list[α] ! list[α]
extract list of elts that satisfy a predicate

– map : (α ! β) list[α] ! list[β]
applies function to all elts, returning list of results

– foldr : (α β ! β) β list[α] ! β
combines elts of list according to given function

Time to practice!
Recall the data defns for animal/boa/armadillo
• ;; A boa is a (make-boa symbol num symbol)

(define-struct boa (name length food))

• ;; An armadillo is a (make-dillo symbol num bool)
(define-struct dillo (name length dead?))

• ;; An animal is one of
;; - a boa
;; - an armadillo

Time to practice!
Write the following programs with Scheme loops
• ;; large-animals : list[animal] num ! list[animal]

;; return list of all animals longer than given num

• ;; eats-pets-count : list[animal] ! num
;; return number of boas in list that eat pets

• ;; kill-all-dillos : list[animal] ! list[animal]
;; return list containing all animals in the input list
;; but with all armadillos dead

