Loops in Scheme, |1

(early dides assume map/filter)

c. Kathi Fider, 2001

Recap: filter and map

o filter and map are Scheme’' s “loops’

— filter : (o = boolean) list[a] = list[a]
extract list of eltsthat satisfy a predicate

—map : (a = P) listja] = list[p]
applies function to all elts, returning list of results

Recall sum

;; sum : listfnum] = num
, adds up the elements of alist of numbers
(define (sum alon)
(cond [(empty? aon) O]
(cons?aon) (+ (first alon)
(sum (rest alon)))]))

Sum also loops; how to write it with filter/map?
[try I]

filter/map don’t work for sum

e Both return lists -- sum returns a number
e Sum requires another kind of loop

* We derived filter by looking at two
programs with similar structure and
abstracting the common parts into a helper
function ...

sum and product

;; sum : listfnum] = num ;» prod : listfnum] = num
;; adds elts of alist of nums ;, multiplies list of nums
(define (sum alon) (define (prod alon)

(cond (cond

[(empty? alon) O] [(empty?alon) 1]

[(cons? alon) [(cons? alon)

(+ (first alon) (* (first aon)
(sum (rest alon)))])) (prod (rest alony)))]))

Where do these two programs differ?

sum and product

;; sum : listfnum] = num ., prod : listfnum] = num
;; adds elts of alist of nums ;, multiplies list of nums
(define (sum alon) (define (prod alon)

(cond (cond

[(empty? alon) O] [(empty? alon) 1]

[(cons? alon) [(cons? alon)

(+ (first alon) (* (first aon)
(sum (rest alon)))])) (prod (rest alony)))]))

Make the blue parts parameters to a new function [try it]

The“New Loop”

;; newloop : _? num listinum] = num
(define (newloop combine base alon)

(cond

(empty? alon) base]

(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

Write sum and product using newloop [try It]

The“New Loop”

;; newloop : _? num listinum] = num
(define (newloop combine base alon)

(cond

(empty? alon) base]
(cons? alon)

(combl ne (first alon)

ewloop (rest alon)))]))

;sum : list]n
(defl ne (sum

9{4 ;» prod : listfnum] = num
(define (prod alon)

(newloop + 0 aon) (newloop * 1 aon)

The“New Loop”

;; newloop : _? num listinum] = num
(define (newloop combine base alon)

(cond

(empty? alon) base]

(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

Write length (of alist) using newloop [try It]

base and alon arguments are easy ... but combine. ...

The“New Loop’

;; newloop: ? num listfnum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
/‘(,Qewl oop (rest aon)))]))

What is combi ne/s contract? [try It]
;; combine . -

(we see from Its use that It takes two arguments)

The“New Loop”

;; newloop: ? num listfnum] = num
(define (newloop combine khase alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

(el oop (rest alon)))]))

What 1s combi ne’/s/contract’? \
: combine: - \

What typeis (firstalon)? A number, by contract

The“New Loop’

;; newloop: ? num listfnum] = num
(define (newloop combine khase alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest

What 1s combine' s contract? \
:combine: num -

What typeis (firstalon)? A number, by contract

The“New Loop’

;» newloop: ? num listinum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

What 1s combine’ s contract?
:combine: num -

| A number, by
What type is (newloop (rest alon))? ~ontract

The “New Loop”

;» newloop: ? num listinum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

What 1s combine’ s contract?
:combine: num num =

| A number, by
What type is (newloop (rest alon))? contract

The “New Loop”

> hewloop: 7?7 num listfnum] = num
(defl ne (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? aon) A number
(combine (first alon) (by contract)

T ——(nawloop (rest don))])) since

What 1s combine's contracN newloop

. returns the
combine: num num =
result of

combine

What does combine return?

The “New Loop”

> hewloop: 7?7 num listfnum] = num
(defl ne (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? aon) A number
(combine (first alon) (by contract)

T ——(nawloop (rest don))])) since

What 1s combine's contracN newloop

. returns the
combine: num num = num
result of

. combine
What does combine return?

The “New Loop”

;» hewloop : (num num — num) num listfnum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

So, combine has contract
:: combine : num num = num

OK, but how do we write combine for length?

The “New Loop”

;» hewloop : (num num — num) num listfnum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

Combine takes the first elt of the list and the result
of looping on therest of thelist. So, your combine
function determines how to put these together ...

The “New Loop”

;» newloop : (num num = num) num listfnum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]

[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))
;; combine : nuUm num = num (this naming
(lambda (elt result-rest) convention on combine
.0) functions reminds you

what the args stand for)

The“New Loop’

;» newloop : (num num = num) num listfnum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]

[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))
;; combine : NUM NUM = NUM = 100tk we don't
(lambda (elt result-rest) care about the contents
(+ 1 result-rest)) of the elt, just that It

exists. Combine
therefore ignores lt.

The“New Loop”

;» hewloop : (num num — num) num listfnum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

;, length : listfa] = num
(define (length alst)
(newloop (lambda (elt result-rest) (+ 1 result-rest))

0 ast) [stretch break]

But walit ...

;» hewloop : (num num — num) num listfnum] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloopArest alon)))]))

The contracts
don’'t match!

; length : listfa] = nu
(define (length atst)
(newloop (lambdé (elt result-rest) (+ 1 result-rest))
0 alst

Fixing the newloop contract

;» newloop : (num num = num) num list{0] = num

(define (newloop combine base alon)

(cond [(empty? alon) base]

[(COHS?. alon? what else must

(combine (flrstlal on)] change in the
(newloop (rést dom)D)” 0

If we change
num to a,

?
; length : list[a] = nu contract”

(define (length atst)
(newloop (lambgé (elt reslt-rest) (+ 1 result-rest))
0 alst

Fixing the newloop contract

;» hewloop : (num num - num) nuArrﬂgt[O(] - num
(define (newloop combine base alon)

Whereisthea
(cond [(empty? alon) base] processed in
[(cons? alon) newloop?
(combine (first alon)
(newloop (rest alon)))]))

;, length : listfa] = num
(define (length alst)
(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

Fixing the newloop contract

;» hewloop : (O num = num) num list{Q] = num

(define (newlocp combine base alon) o the firgt
(cond [(empty>glon) base] argument to

[(cons?alo combine must
(combine (first alon) 250 be o
(newloop (rest alon)))]))

;, length : listfa] = num
(define (length alst)
(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

Fixing the newloop contract

» hewloop : (O num = num) num listfa] = num
(define (newloop combine base alon)

(cond [(empty? alon) base] Thisfixesthe
[(cons? aon) COntraf:t wrt
(combine (first alon) Iengch now
(newloop (rest alon)))])) “ONS der

newloop alone

;, length : listfa] = num
(define (length alst)
(newloop (lambda (elt result-rest) (+ 1 result-rest))
0 alst))

Stepping back: newloop

;» hewloop : (O num = num) num listfa] = num
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

o What in the definition of newloop requiresit to
output a number? (newloop has no arith ops...)

 What if we wanted aloop that returned a boolean,
or astructure, or ...?

Generalizing newloop

> newloop : (00 num = num) num listfa] = 3
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)

Let’s change the cigar/act to let newloop return a
value of any type.

What else in the contract must change to [3?

Generalizing newloop

» newloop : (O num = num) num list[a] =
(define (newloop combine base

B

Where does

(cond [(empty? alon) b the output of
[(cons? newloop
(Combine (first alon) come from?

(newloop (rest alon)))]))

L et’ s change the contract to let newloop return a
value of any type.

What else in the contract must change to [3?

Generalizing newloop

B

Where are
these types

In the
(combine (first alon) contract?

(newloop (rest alon)))]))

L et’ s change the contract to let newloop return a
value of any type.

What else in the contract must change to [3?

Generalizing newloop

> newloop : (00 num = [3) listfa] = 3
(define (newloop coribi
(cond [(empty” Change these
[(Cons? typesto 3
(Ccombine (first alon)
(newloop (rest alon)))]))

L et’ s change the contract to let newloop return a
value of any type.

What else in the contract must change to [3?

Generalizing newloop

> newloop : (0 num = [3) B listfa] =
(define (newloop combine base alon)

(cond [(empty? alon) base] What ?bOUt that
[(cons? alon) lingering .nu.m?
(combine (first alon) (whereisit

(newloop (rest alon)))])) Trom)?

L et’ s change the contract to let newloop return a
value of any type.

What else in the contract must change to [3?

Generalizing newloop

> newloop : (0 num = [3) B listfa] =
(define (newloop combine base alon)

(cond [(empty? alon) basg] The num isthe

[(cons? alon) second argument
(combine (first alon) to combine
(newloop (rest alon)))]))

L et’ s change the contract to let newloop return a
value of any type.

What else in the contract must change to [3?

Generalizing newloop

> newloop : (0 num = [3) B list[a] =2 B
(define (newloop combine base alon) Bt this val ue
(cond [(empty? @lon) base] comes from the
[(cons?algn) output of
(combine (fir newloop!
(newloop (rest alon)))]))

L et’ s change the contract to let newloop return a
value of any type.

What else in the contract must change to [3?

Generalizing newloop

newloop: (O[3~ [3) B listfa] »
(define (newloop combine base alon)

So this num

(cond [(empty? @ on) base] must also
[(cons? alon) become a3
(combine (fir
(newloop (rest alon)))]))

L et’ s change the contract to let newloop return a
value of any type.

What else in the contract must change to [3?

At longlast ...

. newloop : (0 3 =) B listfa] = [3
(define (newloop combine base alon)
(cond [(empty? alon) base]
[(cons? alon)
(combine (first alon)
(newloop (rest alon)))]))

Actually, newloop is built-in. It's called foldr

Thefoldr loop

o foldr: (03 > B) P listfa] = B
(define (foldr combine base al st)
(cond [(empty? alst) base]
[(cons? alst)
(combine (first alst)
(foldr (rest alst)))]))

;, length : listfa] = num
(define (length alst)
(foldr (lambda (elt result-rest) (+ 1 result-rest))
0 aon))

Phew!

* We now have three loops at our disposal:

— filter : (a = boolean) list[a] — list[a]
extract list of eltsthat satisfy a predicate

—map : (a =) listfa] = list[f]
applies function to all elts, returning list of results

—foldr: (B = B) B listfa] = B

combines elts of list according to given function

Time to practice!

Recall the data defns for animal/boa/armadillo

e ;; A boais a(make-boa symbol nhum symbol)
(define-struct boa (name length food))

 ;; Anarmadillo isa(make-dillo symbol num bool)
(define-struct dillo (name length dead?))

e = An animal 1sone of
- aboa
- -anarmadillo

Time to practice!

Write the following programs with Scheme loops

e ;;large-animals: listfanimal] num = list[animal]
; return list of all animalslonger than given num

e ;; eals-pets-count : listfanimal] = num
; return number of boasin list that eat pets

o ;; kill-all-dillos: listfanimal] = listfanimal]
» return list containing all animals in the input list
;; but with all armadillos dead

