CS1102: Introduction to Macros

Kathi Fisler, WPI
September 29, 2008

1 The Need to Improve Our Slideshow Language

Last we looked at our slideshow package, we were left with msetiled feeling that we hadn't really created a
language. We created a collection of data definitions fogrmms and an interpreter to process those definitions, but
the structures didn’t give us something that looked like mveational programming language. Recall that at the end
of the last lecture | explained that we actually HAVE creadddnguage (the hard part, that is), we just hadn’t put the
cleaner notation on top of it. Today, we want to see what wel teeo to handle this final step.

As a starting point, let’s recall what our current talk prags look like:

(definetalkl
(let ([intro-slide (lambda () (make-slide . .))]
[arith-eg-slide
(lambda ()
(make-slide
(make-next-example-tijle
(make-pointlis(list "(+ (x 2 3) 6)" "(+ 6 6)" "12") false))]
[func-eg-slidglambda () (make-slide. .))]
[summary-slidélambda () (make-slide..))])
(make-talk
(list (make-display intro-slide
(make-timecon@ambda (time) (> 10 time))
(list (make-display arith-eg-slide
empty
(make-display func-eg-slijle
(make-display summary-sligg

If we wanted to clean up this syntax, what might we want to do?

1. We probably want to get rid of parts of the code that are tdweSie-specificlémbda, make-from define-
structs etc).

2. We want to get rid of details that the implementation neéds that don’t contribute information about the
computation that the programmer wants to perform.

For example:

e The (ambda () ...) around each slide is annoying. Tlaenbda is definitely Scheme-specific. Furthermore,
someone who is writing talks shouldn’t have to remember @mpnalambda around every slide.

¢ All of the list commands are annoying. We have to write them even if we halyeooe item to put in the list.
Also, these expose the language implementation to the anoger.

e The program really isn't self-contained. We use Schéht specify the slides, then use the slide names in the
actual body of the talk. This isn’t a big deal, but it is sonmeghwe would ideally like to address.

e Having to writetrue andfalsein each pointlist isn’'t as annoying as the other issues, thaterror-prone and
mildly irksome. If someone is writing a program in this laage, they have to keep recalling whetirere
yields a numbered or a bulleted list.

In general, details that are extraneous to the program seengants to write are problematic for two reasons:

e The programmer might forget to write them down, leading togpam errors.

e The whole point of creating a new language is to give progransroonstructs that make it easier to write certain
kinds of programs. The more a language has extraneousgjetailharder programs are to write, and the less
useful the language becomes.

With this in mind, let's work on improving our programminguiguage.

1.1 Fixing Pointlist Specifications

How might we augment the language to save programmers froramdering the correspondence betwias/false
and the numbering scheme? We can easily address this bygastaire functions to our program that set the numbered?
field for us:

;» pointlist-numbered : list[string}~ pointlist

;; create numbered pointlist with given points

(define (pointlist-numbered poinjs
(make-pointlist points trug

;; pointlist-bulleted : list[string]— pointlist
;; create non-numbered pointlist with given points
(define (pointlist-bulleted points

(make-pointlist points falge

Using these functions, we could rewrite our talk program as:

(definetalkl
(let ([intro-slide (lambda () (make-slide . .))]
[arith-eg-slide
(lambda ()
(make-slide
(make-next-example-tijle
(pointlist-bulleted(list "(+ (x 2 3) 6)" "(+ 6 6)” "12™))))]
[func-eg-slidglambda () (make-slide.. .))]
[summary-slidélambda () (make-slide..))])
(make-talk
(list (make-display intro-slide
(make-timecon@ambda (time) (> 10 time))
(list (make-display arith-eg-slide
empty
(make-display func-eg-slijle
(make-display summary-sligg

This example demonstrates one easy way to make a progrationatere readableéntroduce functions to supply
data that the programmer might otherwise forget how to dgeci

An aside

If you wanted to get rid of théist argument to the pointlists, you could instead write these Inelpers as functions
taking an arbitrary number of arguments as follows:

;; pointlist-bulleted? : list[string}— pointlist
;; create bulleted pointlist with given points
(define pointlist-bulleted?2
(lambda points
(make-pointlist points fal3p

we would call this asgointlist-bulleted2'(+ (x 2 3) 6)" "(+ 6 6)" "12").

In general, Scheme turnddfine (foo X . ..) into (definefoo (lambda () ...)). This style creates an anonymous
function (usinglambda) then useslefine to name that function. This version of pointlist-numberegsg one step
farther and takes the parens off around the parameter saicifi. When you do this, Scheme bundles all the argu-
ments (however many there are) into a list and passes thaslthe actual parameter. You can require some number
of arguments by usindgmbda (arg1 arg2. rest-of-arg$. . .) — this requires a minumum of 2 arguments, with all args
after the first two bundled into a list (the list would be emiftyre function is called with only two arguments).

I included this just for fun. You won’t be tested on arbitraaggument functions.

1.2 Removing Lambdas on Slide Specifications

Let’s use a similar approach to clean up how we write dowreslidnstead of having the programmer write down the
lambdas, let's write a function that takes the data for a slide amakne the appropriateambda. I'll call the function
myslideso that we don'’t create a conflict with our current use of theeslidein the define-struct

;; myslide : string slide-body- (— slide)
;; return a function to make a slide
(define (myslide title body
(lambda ()
(make-slide title body)

Using this function, our slide program would look like:

(definetalkl
(let ([intro-slide (myslide. . .)]
[arith-eg-slide
(myslide
(make-next-example-tijle
(pointlist-bulleted(list "(+ (x 2 3) 6)" "(+ 6 6)" "12")))]
[func-eg-slidémyslide. ..)]
[summary-slidémyslide. . .)])
(make-talk
(list (make-display intro-slide
(make-timecon@ambda (time) (> 10 time))
(list (make-display arith-eg-sligde
empty
(make-display func-eg-slijle
(make-display summary-sligg

If we made this change, we would notice an odd behavior — oamg@ke numbering is off again! If we delay
advancing off the first slide, the second slide has "Exampbs2 title, which is what outimecondsupposedly fixed.
What happened?

Think about this before reading further.

Why did we add thdambda in the first place? We needed to prevent Scheme from gettmgdlue ofmake-
next-example-titlentil run-time. In the call tanyslide we removed that protection. Scheme evaluates all argument
to functions before calling the functions. Scheme theeéallsmake-next-example-titlpasses the result toyslide
and then buries thealuein the lambda. We don’t want to bury the value, though, we wabury theexpression that
computes the valu®©urmyslidefunction therefore defeats the entire purpose of addingatimdda in the first place.

In short, functions won’t work here because Scheme alwaghkiates arguments to functions. In this instance, we
need something that adds cadithout evaluating its arguments. In other words, we need macros.

2 What's A Macro?

Think of macros like special rules or patterns that take agression and rewrite it into another expressigthout
evaluating any of the piece¥his is exactly what we want in thayslidecase. We want to be able to write

(myslide
(make-next-example-tijle
(pointlist-bulleted(list "(+ (x 2 3) 6)" "(+ 6 6)” "12)))

and have Scheme convert it into

(lambda ()
(make-slide
(make-next-example-tijle
(pointlist-bulleted(list "(+ (* 2 3) 6)" "(+ 6 6)" "12"))))

without evaluating the subexpressions.
How do we do this in Scheme? Let’s get the code down first, agia éimalyze it:

(define-syntax myslide
(syntax-rules()
[(myslide title body)
(lambda ()
(make-slide title body]))

First, look at the last three lines: we see a pair of squarekkta surrounding two expressions. The first expression
is the myslide expression that we tried to implement using a function; #moed expression is the translation that
we’d like to have for the first expression. Above that are timed that introduce new Scheme keywords. The first line
says that expressions starting wittyslide should not be evaluated. The second line is required syotaddfining

the translation rules. Never mind the () for now — we’ll explevhat that’s for in due time. For now, just make sure it
follows thesyntax-rules

This kind of expression that transforms one expressiondntiher is called mmacra We'll be learning a lot about
macros and how to use them effectively as we continue oupexjbn of languages.

How do macros work? When you hit Execute, Scheme does a figstqeer your code translating all the macros
into their corresponding expressions (this is cattegtro-expansion During macro expansion, Scheme will translate
all expressions of the forrn{yslide <title-expression <body-expressian) with the correspondinglgmbda ()
(make-slide ..)) expression without evaluating thditle-expressior or the <body-expression. It's that simple.
After the macro-expansion pass, Scheme will load your fanogand Execute it as you are used to so far.

Put more visually, the following diagram shows the stagastihppen when going from a program to its execution.
A full-fledged language implementation takes the top patii;li02, we will follow the lower path, basically bypassing
the parser (take a compilers course if you want to undergtennhissing stage better).

Source macro parser interpreter
— | Data Structures——— Resullt
Program | expande Raw Program|

_7

Returning to Slideshow

If we add themyslide macro definition to the slideshow package, we can now writdallh as we wanted to before,
without introducing errors in the example numbering:

(definetalkl
(let ([intro-slide (myslide. . .)]
[arith-eg-slide
(myslide
(make-next-example-tijle
(pointlist-bulleted(list "(+ (x 2 3) 6)" "(+ 6 6)" "12")))]
[func-eg-slidgmyslide....)]
[summary-slidémyslide. . .)])
(make-talk
(list (make-display intro-slide
(make-timecon@ambda (time) (> 10 time))
(list (make-display arith-eg-slide
empty
(make-display func-eg-slijle
(make-display summary-sligg
To finish the slideshow example, we have to see how many of ttier annoyances we listed at the beginning of

the lecture can be removed either using functions or usingrosa Before we do that, though, let’'s get a better
understanding of, and practice with, macros.

2.1 Some Other Macro Examples

As a rule of thumb, we use macros whenever we want to writeesgons thalook like functions, but that don't
evaluate in the same way (eval the args first, then eval a bé&dyacro is just a rule for rewriting one pattern into
another. Let’s look at two other macro examples, one of wi@kive been using all term.

2.1.1 Or

Let’s pretend thabr was not a built-in operator, and that you wanted to defineétet$ an attempt using a function (I
give it the nameny-orto avoid conflicts with the built-iror operator).

;; or : boolean boolean> boolean
;; return true if and only if one of the inputs is true
(define(my-or el e?
(cond[el trug
[elsee?))

What would be some good test casesrforor? Let's try a few and see how this looks:
> (my-or(=33) (> 3 3))
true

> (my-or(> 3 4) (=4 4))
true

> (my-or(=34) (> 34))
false

Looks good, right? Let’s try one more exampley-or (= 3 3) (= 3 'a)). What answer should you get on this? You
should get true, since the first argument evalutes to trueat\th you get? You get an error, since you can’'t use = on
a symbol argument. If you tried this same expression usihg®e’sor instead ofmy-or, you'd gettrue.

From other languages, many of you know tbat‘short-circuits” — as soon as it finds an argument that evalu-
ates to true, it returns trugithout evaluating the remaining argumentbhis requirement tells you that can’t be
implemented as a regular function. It has to be somethingalpét is; it's a macro.

(define-syntax my-or
(syntax-rules()
[(my-or el el
(cond[eltrug
[elsee2)]))

How does this macro solve our short-circuit problem? If yecall how Scheme evaluates conditionals, it will only
evaluatee? if el (the first test) was false. We relied on our knowledge of holwefte evaluates expressions to
implement this macro properly.

2.1.2 Time

Often, we want to determine how long a particular computatiok to complete (for performance analysis, for
example). For this, it's useful to haveiae operator that takes an expression and prints out the amétintespent
executing that expression. Given a particular expressioch as run-talk talkl), we could compute the execution
time using the following expression:

(let ([start-time(current-second$)
(let ([result(run-talk talk)])
(begin (printf "Time used: "a™n” (— (current-secondsstart-time)
resul)))

Since we might want to time any number of expressions, we teaparameterize this expression over the com-
putation to time. We have two options: functions and macvékich should we use and why? If we used a function,
we’d write something like:

(define (time exp)
(let ([start-time(current-second$)
(let ([result expf)
(begin (printf "Time used: "a™n” (— (current-secondsstart-time)

resul)))

(time (run-talk talk))

This would have the same problem we encountered earlieerBehvould evaluaten-talk talkl) before calling
the time function. That's bad in this case because we doart steasuring the execution time until we get into the
body oftime, after which the expression has already been evaluated{arnthance to measure the time lost).

Let’s write this as a macro then:

(define-syntax time
(syntax-rules()
[(time expn)
(let ([start-time(current-second$)
(let ([result expt)
(begin (printf "Time used: "a™n” (— (current-secondsstart-time)

resulh))]))

(time (run-talk talk1))

Again, this works because we don'’t start evaluagrgr until after we've saved thstart-timeand are actually timing
the computation. The difference between macro-expansiadnd run-time saves us here.

But wait — couldn’'t we have written time as a function if we'dadllambda to delay when we evaluate the
expression? For example, why wouldn’t the following noneneesolution have worked?

(define (time expr-fung
(let ([start-time(current-second$)
(let ([result(expr-fung])
(begin (printf "Time used: "a™n” (— (current-secondsstart-time)

resul))))

(time (lambda () (run-talk talk1)))

What do you think? Would this work?

This approach would indeed let us measure the evaluatian @nperformance purist would note that we add a
bit of extra time to our measurement though, because we theurost of calling thexpr-funcexpression inside the
body). It sort of misses the point, however, because weheratot have to remember to wrap fhenbda around the
function before timing it. If you forget thlambda, it's not like the programmer gets an error message, theyggis
an inaccurate time measurement! Our goal is always to stffpprogramming task, and thereby programmers, as
best we can.

Okay, so we still want the macro to make the code cleaner, btV could have used tHambda version though,
couldn’twe? As in, couldn’t we have writtdime with a combination of the function and the macro, as:

(define (time-as-func expr-func
(let ([start-time(current-second$)
(let ([result(expr-fung])
(begin (printf "Time used: "a™n” (— (current-secondsstart-time)

resul)))

(define-syntax time
(syntax-rules()
[(time expm)
(time-as-funglambda () expn)]))

(time (run-talk talk1))

Could you do this, yes. Does it make sense? No. The macrovashire same thing as ttembda, and notice
we needed a bit more code infrastructure to make this worle mhcro version is smaller, cleaner, and therefore
preferable in this case.

