CS1102: Adding Error Checking to Macros

Kathi Fisler, WPI
October 8, 2004

1 Typos in State Machines

The point of creating macros for state machines is to hidguage details from the programmer. Ideally, a programmer
shouldn’t need to know anything more than the macro inputissyim order to write down usable state machines. Recall
our macro for converting the clean state machine syntaxtirgstructure-based language:

(define-syntax monitorl
(syntax-rules(-> :)
[(monitorl inithname
(curr-state: (label-> next-statg...)

o)
(make-monitor
"inithame
(list (make-statecurr-state (list (make-translabel ' next-state)
1)
"))

This macro is designed to work with the following interprete testing state machine monitors against sequences
of inputs:

;; interp-monitor : monitor list[symbol}» symbol
;; run monitor on samples, returning 'okay or ‘error
(define (interp-monitor a-monitor samplgs
(run-monitor(monitor-init-state a-monitgr
samples
(monitor-states a-monitQ))

;; run-monitor : symbol list[symbol] list[states} symbol
;; run monitor on samples from current state, returning Yos&'error
(define (run-monitor curr-state samples all-stajes
(cond [(empty? samplgsokay]
[(cons? samplgs
(let ([next-statefind-next-state curr-stat@irst sampleyall-stateg])
(cond [(boolean? next-stajéerror]
[else(run-monitor next-statérest samplesall-stategd]))]))

;; find-next-state : symbol symbol list[state] symbol or false
;; finds name of next-state in transition from given statet(firg) on given input/guard (second arg)
(define (find-next-state curr-state label stajes
(let ([state(first (filter (lambda (st) (symboE? curr-state(state-name 3}) state3)])
(let ([trans(filter (lambda (tr) (symbok&? label(trans-guard t)))
(state-transitions stajg])



(cond [(empty? tranksfalsg
[else(trans-next-stat€first trang)]))))

Imagine that a programmer uses the macro as shown below,dkgswm typo in the first transition to 'schemeis-
green (left out one of the "e”s in green). What happens wherptbgrammer tries to test the state machine?

(definebuggy-TL-monitor
(monitorl is-red
(is-red: (green-> is-gren)
(red-> is-red))
(is-green: (yellow-> is-yellow)
(green-> is-green)
(is-yellow: (red-> is-red))))

> (interp-monitor buggy-TL-monitdtist 'red 'green 'yellow 'green))
first: expects argument of typenon-empty list; given ()

This error comes from thénd-next-statdunction, specifically the call téirst used to get a value for thetate
variable. Knowing how the macro and interpreter work, thisemakes sense: the first sample(l) pulled out next-
stateis-gren which got passed as the current statéind-next-stateMakes sense to us, but a programmer shouldn’t
have to understand how our language works in order to useait (iefeats the point of creating a language!). We've
provided a cute syntax for state machines, but we havenvigied the support tools that programmers should expect
from a useful language.

This general problem where the details underlying an implaation sneak out and become visible (and a headache)
for a programmer has been called "abstraction leakage”. |&d¢tares page has a link to a very nice piece on leaky
abstractions by software developer Joel Spolskyow can we plug the leak in our state-machine language?

2 Catching Typos in Next States

The cause of the error in this case is easy to explain: theanuger used a next-state name that was not the name of
any state in the same state machine. Given that the macesmphts access to all of the names used for the states and
the next-states, we should be able to add some code to the thatwwill check whether all the next-state names have
been used as state names.

Let’s start by adding some code to the macro that will collists of all the state names that got defined and all of
the next-state names that got used:

(define-syntax monitor2
(syntax-rules(->:)
[(monitor2 initname
(curr-state: (label-> next-statg...)

.2)
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state . .. )]
[used-next-namdappend(list ' next-state ...) ...)])
2?7
;; build the monitor
(make-monitor

'inithame
(list (make-statécurr-state (list (make-translabel ' next-state)
.2)
D)

1 highly recommend his software development biagv. j oel onsof t war e. com



We need to usappendon theused-next-statdsecause the next-state names are within two sets of ell{psesfor
the transitions and another for the states).

Now that we have these two lists, we just need to write codectieacks whether every element of the next-state
listis in the list of states; if we find a next-state that is mathe list, produce an error message.

(define-syntax monitor2
(syntax-rules(->:)
[(monitor2 initname
(curr-state: (label-> next-statg...)
.2)
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state . .. )]
[used-next-namdappend(list 'next-state ...) ...)])
(map(lambda (next-namg
(cond[(member next-name defined-state-ngrtres]
[else(error (format” Used undefined next-state name "a" next-namp]))
used-next-namgs
;; build the monitor
(make-monitor

‘inithame
(list (make-statécurr-state (list (make-translabel ' next-state)
)
D)

If we use this macro to create the buggy state machine, weyetilhin error message before we even get to run the
interpreter:

Used undefined next-state name is-gren

3 Catching Typos in Labels

Now that we see how to catch typos in next states, it is woitingsvhether there are any other kinds of errors that
we could check for in the macro. What about the labels on iians? That is another place where a programmer
might make a typo. Can we check for typos on labels the samengadid for next states?

Label typo checking is a little harder in our current macrchaf we checked for typos in the next states, we had
names to compare them to: the names used to define the statetieid do we have a list of valid labels to check
against. If we want to support typo checking on labels, wé mékd to add the names of valid labels to the macro.
Let's add that to the source syntax with a keywtratk-labels

(define TL-monitor3
(monitor3 is-red(tracks-labelsred yellow greeh
(is-red: (green-> is-greer)
(red-> is-red))
(is-green: (yellow-> is-yellow)
(green-> is-green)
(is-yellow: (red-> is-red))))
First, let’s edit the input pattern to expect the new traleltsels statement. We need to adatcks-labelsto the list
of keywords, and we need to add the pattern for it to the inpttepn.

(define-syntax monitor3
(syntax-rules(-> : tracks-labels)
[(monitor3 initname(tracks-labelslabell. . .)



(curr-state: (label-> next-statg...)
)
(begin

;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state ... )]

[used-next-namdappend(list 'next-state ...) ...)])

(map(lambda (next-namg
(cond[(member next-name defined-state-ngrtres]
[else(error (format” Used undefined next-state name "a" next-namyp]))
used-next-namgs

;» build the monitor
(make-monitor

‘initname
(list (make-statécurr-state (list (make-translabel ' next-state)
1)
D)

Now, what do we want to do with the labels that we are trackig?want to do something similar to what we
did with the next-states, checking that each label that getiwn a transition was given as a label inttiaeks-labels
statement.

(define-syntax monitor3
(syntax-rules(-> : tracks-labels)
[(monitor3 initname(tracks-labelslabell. . .)
(curr-state: (label-> next-statg...)

.2)
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢kst ' curr-state . .. )]
[used-next-namdappend(list 'next-state ...) ...)])
(map(lambda (next-namg
(cond[(member next-name defined-state-ngrtres]
[else(error (format” Used undefined next-state name "a" next-namp]))
used-next-namgs
;; check that all used label names are valid
(let ([defined-labelglist 'labell . ..)]
[used-labelgappend(list 'label ...) ...)])
(map(lambda (used-labél
(cond [(member used-label defined-labédlsie]
[else(error (format” Used undefined label name "a" used-labé))]))
used-labely
;; build the monitor
(make-monitor
'inithame
(list (make-statécurr-state (list (make-translabel
'next-state)
)

)

With this macro, typos in the label names will also be repbttethe user before they try to test the state machine
with the interpreter.



4 A Little Cleanup

The macro now has two uses of very similar code for checkindyfoos in the next states and labels. If this were a
standalone program, we would create helper functions t@entte common code into one function. Macro output
isn’t much different from a standalone program, so let'stdmgame here. The resulting macro looks like:

(define-syntax monitor4
(syntax-rules(-> : tracks-labels)
[(monitor4 initname(tracks-labelslabell...)
(curr-state: (label-> next-statg...)

(local [(define (confirm-names-in-list check-names in-list error-stjing
(map(lambda (name¢
(cond [(member name in-listrue]
[else(error (format error-string namy]))
check-namej]
(begin
;; check that all used next-states are defined as states
(let ([defined-state-nam¢lst 'curr-state . .. )]
[used-next-namédappend(list ' next-state ...) ...)])
(confirm-names-in-list
used-next-names defined-state-natriésed undefined next-state name "a"))
;; check that all used label names are valid
(let ([defined-labelglist 'labell . ..)]
[used-labelgappend(list 'label ...) ...)])
(confirm-names-in-list
used-labels defined-labéléJsed undefined label name "a"))
;; build the monitor
(make-monitor

"initname
(list (make-statécurr-state (list (make-translabel ' next-state)
)
=)))))

Notice that we used local to define a function that takes ttodists to check and the error string to generate, then
called that helper function to perform the checks. This igiff@rent than what we would have done when creating
helper functions outside of the context of macros.

5 Summary
This lecture has tried to bring across two important points:

e When we define a language, we run the riskbsétraction leakageThis occurs when implementation details of
the language are accidentally exposed to the programmeisusing the language. Abstraction leakage almost
always arises when a program contains errors (logicalgrtypos, etc).

The leakage problem points to another caveat in softwalgmtegesigners are generally good at deciding how
to handle correct inputs, but don’t always think enough &abow to gracefully handle incorrect inputs.

e Macros are really programs that produce other programs.c#oput arbitrarily complex code into the output
part of the macro. The programmer never needs to know abisutdlde. It just runs behind the scenes when
the programmer uses the macro. This shows that macros disemesch more than handy tools for replacing
one piece of code with another.



As aresult of this lecture, | expect that you could

¢ Identify some kinds of mistakes that programmers might niakesing a macro, and

e Implement simple kinds of error checking at the level thatdicehere.



