CS1102: What is a Programming Language?

Kathi Fisler, WPI
September 15, 2004

1 The Design and Programming Perspectives

To start to understand what comprises a programming largguatis consider sample programs in four different
languages (see Figure 1). What differences do you observe?

1.

Syntax: each uses rather different notations for writiogvn programs. Quite true, but syntax is only so
interesting; let’s look for deeper differences.

. What kinds of data they inherently support. Fortran suggbvarious kinds of numbers, C includes arrays,

while Scheme included lists (define-struct came in latemahas classes.

. Program organization techniques: The original Fortram’tleven have functions or basic blocks of code.

Modern languages all provide functions, many now provids®ts and objects, as well as larger organizational
constructs like packages and modules.

. What kinds of control constructs the programmer can usexpwess computations. Fortran provided only

branches (conditionals) and goto-statements. Later kgegiprovided loops, function calls, exceptions, and
other ways for programmers to control how a program executes

. What the language will do for the programmer. Languadiesdi require programmers to declare variables and

free memory. Languages like Scheme and Java use garbagetionll(programs that reclaim memory when a
program is no longer using it). The different degrees of tyy@eking in modern languages (and there are lots of
interesting differences) also fall into this category.

Even though these samples are from large, mainstream lgagutne same differences define the boundaries of
small, domain specific languages (such as those you impletmemeate a particular software system). Thus, our
quick contrast of these languages suggests the questiansegal to ask when you're about to define a new langdiage:

R

5.

What kind of data is this language designed to process?

What operations can someone perform on the data?

What control operators do | need to sequence operations?

What work is the language trying to save the programmen filoing?

What decisions should be postponed until run-time?

1Side note: Languages are fascinating artifacts, becaeyeatle carefully engineered to tradeoff a range of concékasghie ones in this list
(while retaining efficiency and a host of other importanttdieas). If you're interested in this material, you shoulketa more substantial and
upper-level course than 1102. Starting 2005-6, CS 453@(Bnoming Language Design) will be offered every-other yaaimilar course is the
annual graduate course CS536 [Programming Language Desiginh undergraduates can count as a 4000-level class.

FORTRAN (mid 1950's;1964)

10 I F (X GT.0.000001) GO TO 20
11 X = -X
I F (X. LT.0.000001) GO TO 50
20 I F (X*Y.LT.0.000001) GO TO 30
X = X*Y-Y
30 X = X+Y

50 CONTI NUE
X=A
Y = B-A
G0 TO 11

asample from slides for John Mitchell’s PL course at Stanford

Schemeg(1975)

(define-structboa(name length ea}¥

(define(all-boa-foods ani-Ist
(map boa-eattfilter boa? ani-Is}))

C (1978}

#i ncl ude <stdi o. h>
#i ncl ude <mall oc. h>

/* Linked list structure */
struct c_linked_list

{
char data[20]; /* String */
struct c_linked_list *next;

}s

/* Type def for linked list */
typedef struct c_linked_list |ink;

voi d deallocate_list(link *elenment) {
link *current;

/* Cycle through list */

while (element !'= NULL)

{
/* Copy pointer */
current = el enent;
/* Get next pointer */
element = (link *) el ement->next;
/* Free old pointer */
free (current);

}

}
8Code adapted from http://www.stat.cmu.edu/ hselt-

man/c/Reilly.html

Java(mid 1990s}

cl ass Body {
public long i dNum
public String name="'<unnaned>'’;
public Body orbits = null ;
private static long nextlD = O;

Body() {
i dnum = next | D++;
}

}

Body sun = new Body();
sun. i dNum = Body. next | D++;
sun.nane = ‘‘Sol '’ ;
sun.orbits = null ;

aCode fromThe Java Programming Languagken Arnold and
James Gosling. Addison Wesley 1996

Figure 1: Sample code fragments from four well-known pragrang languages.

2 The Implementation Perspective

The previous section gave a high-level view of what a langtsga collection of data, operations, control operators,
and other features that let us write programs. That doeslhit$ how to implement a language though. What does it
mean to implement a programming language?

An implementation of a language allows someone to write amdprograms in that language. If you want to
implement a language, you must provide:

1. A syntax for writing programs in the language, and
2. A program or process that executes programs written irsjnaax.

The second requirement means that we need to be able to wogeams (callednterpreter9 that take programs as
input and produce the results of running those programstasibun order to “take a program as input”, we will need
data definitions for programs (if you don’t see why, try wigithe contract for an interpreter). These data definitions
give us one (albeit clumsy) syntax for writing down programseal language implementation puts a cleaner syntax
before the data definition to make programs easier to writeother words, a language implementation based on
interpreters has three stages:

Parser_|Data Structute Interpreter
Source Code e =" Resultof
for Programs Running Program

We will touch on both stages. We’'ll start with the later stég&ta definitions for languages and writing interpreters),
then we’ll discuss one technique (macros) to quickly creatkeaner syntax on top of those data definitions.

2.1 ButWhat Is a Programming Language, Really?

More abstractly, languages are what we adlstractionsways of seeing or organizing the world according to certain
patterns, so that a task becomes easier to carry out. Moatety, think about a while loop in C/C++. When you
write a while loop, you expect the machine to carry out cartasks for you automatically: testing the termination
condition, running the loop code if the test passes, exifirgloop if it doesn’t, etc. When you write down a while
loop, you don’t write down all of these steps. The while los@icommon and useful pattern in programming that
the designers of C gave you in the form of a language constfine while loop is an abstraction: a reusable pattern
where the language executes part of the pattern autontgtevadl you supply the parts that are different. Yoould
write down all of those steps manually, but then your progveould be longer, harder to read, and more painful to
write and debug.

Similarly, map and filter from Scheme are abstractions:epast of programs that share a common structure: you
write your code in terms of map and filter, and those consdraxecute the common pattern. The main difference
between mapf/filter and while loops in this context is that gan define map/filter and similar functions in your
programs, while C builds while into the language, and ddegwmé you good support for defining your own loops.

Languages are collections of abstractions: collectionsahmon patterns that programmers can combine
into working programs.

When you implement a language, you implement those pattebstractions) that make up the language. You provide
programmers with the tools they need to express the conipusathey want to perform. One task of a language
designer is therefore to understand what programmers waxgress (according to questions like those presented in
Section 1), and then to implement the abstractions (usiegpreters or compilers) corresponding to those patterns s
someone can program in the new set of constructs.

2.2 Interpreters Versus Compilers

The interpreter-based strategy outlined previously iswag to implement a language. Another strategy is to trans-
late programs in your new language into programs in an egjgtarget) language, then use the tools for executing

programs in the target language to run your program. Thisogmh is calleccompilation If we wanted to compile
Scheme, for example, we would need to write a program (a dempihat translates Scheme into some known lan-
guage (such as C). Another compiler would translate C inserably, and so forth. The code for implementing a
C-style while-loop is in the compiler that takes C-code daassembly language. At the lowest level in this hier-
archy, an interpreter runs the final program to produce awemng he following hierarchies show common strategies
for implementing Scheme and Java systems:

Scheme Java
Y \i
c Java Virtual
Machine (JVM)
Y Y \J \
Assembly Assembly
Language Language
\ \J
Machine Code Machine Code
(1s and 0s) (1s and 0s)

Each arrow represents a different program that translates éne language into the next. If there are multiple
arrows from one box to the next, it means that there are nhellfvchitecture-specific) versions of the lower language,
so multiple translators get uséd.

3 A Concrete Example: Implementing a Slideshow Package

Let's implement a slide-presentation system, similar imitspp Powerpoint. The web site has a sample Powerpoint
presentation for those of you who aren't familiar with it. ®twould a naive implementation of the slideshow look
like (using a simple, text-based interface)? Look at Figurevhat’s wrong with this implementation (aside from the

unappealing text-based interface)?

e The programmer manually inserts the begin/end of slideslgsh time.

e The programmer has to explicitly add theait-clickcommands, even though those are standard between slides.
e The programmer has to catint-string all the time, even though all the slide data are strings.

e There’s little here that the programmer could reuse whetingranother slideshow presentation.

This example is crying out for a language for writing slidests, and for an interpreter to run those slideshows.
To start defining the language, we need to answer the fiveiquedtom Section 1:

1. Slides are the data. Slides have titles and content. Thierbmay be a bunch of text, or lists that are either
bulleted or numbered. We may also have overlays, which atessihat sit on top of other slides, so that we can
present content in stages.

2. The main operation on slides seems to be displaying thetiheoscreen.
3. We sequence slides by putting them in some (linear) order.

4. The language should save the programmer from waitinglickscto move between slides, from printing titles
manually, and from manually specifying/tracking item nwergiin itemized lists.

20ne of the technical advances that Java contributes isiaioicher sets of language constructs (a richer abstragdtiefore the code specializes
per architecture. This picture enables the “write once amywhere” goal behind Java’s design.

;; Stage -1 : Powerpoint without a language

;» print-string : string— void
;; prints string and a newline to the screen
(define (print-string str)

(printf " "a™n" str))

;; await-click : — void
;; mimics a mouse click by waiting for the user to type a chemac
(define (await-clicK) (read))

(begin
(print-string " ")
(print-string " Hand Evals in DrScheme™")
(print-string " Hand evaluation helps you learn how Scheme reduces programs to values")
(print-string " ")
(await-click)
(print-string ™ ")
(print-string " Example 1")
(print-string” (+ (x 2 3) 6)")
(await-click)
(print-string” (+ 6 6)")
(await-click)
(print-string" 12")
(print-string " ")
(await-click)
(print-string " ")
(print-string" Summary: How to Hand Eval")
(print-string " Find the innermost expression”)
(await-click)
(print-string " Evaluate one step")
(await-click)
(print-string " Repeat until have a value")
(print-string " ")
)

Figure 2: A naive implementation of a slideshow.

5. It's not clear at the moment what decisions should be postg until run-time, so we’ll come back to that one
later.

Let’s start by implementing a simple prototype of our slites system. Aprototypeis a working version of a
scaled-down version of the system. The prototype lets usefigut how to implement the key concepts, and we’ll
build on those concepts later as we refine the language. Fdirsiuprototype, we’ll implement basic sequences of
slides (no overlays), and use a simple text display ratlser ghfancier graphics display.

3.1 The First Prototype

Note: Refer to the code posted with the notes on the class websdariore complete picture of the finished code.
Recall that implementing a language requires us to writgqams that take programs in our language as input and
execute those programs. In other words, we're writing a faag

;; run-talk : slideshow-program» ??7?
;; executes a program in our (new) slideshow language

What is aslideshow-progrard From this contract, it looks like something we need a dataitien for it (since
it's certainly not built-in to Scheme. That's exactly rightve need a data definition for writing down prograth&n
(and only then!) we'll need a program for implementing (runy) the slideshow programs.

Let’s start by considering how we model slideshow prograsdada:

3.2 Modeling the Data
We've already observed that our data consists of slides esoagd a data definition for slides:

;; a slide is a (make-slide string slide-body)
(define-structslide (title body))

;; a slide-body is either

;; - a string (paragraph), or

;; - a (make-pointlist list[string] boolean)
(define-struct pointlist (points numbered?

;; Examples
(make-slide
" Hand Evals in DrScheme"
" Hand evaluation helps you learn how Scheme reduces programs to values")

(make-slide
" Example 1"
(make-pointlis(list " (+ (x 2 3) 6)" " (+ 6 6)" " 12") false)

3.3 Modeling the Operations

At this stage, we are nahplementinghe operations, we are instead tryingépresent programs as datso we can
later write an implementation. We must develop a data de&finfor the set of operations in our language. Right now,
we only have a display operation (though we might have maee)lal_et’s write a data definition for operations (here
calledcommandp

»Acmdis

;; - (make-display slide)

(define-struct display(slide))

;; Example
(make-display
(make-slide
" Hand Evals in DrScheme"
" Hand evaluation helps you learn how Scheme reduces programs to values"))

Remember, this isn’t trying tamplementthe display operation: it's merely giving us a way to writeadothat
someone wants to perform a display operation on a slide wheeruwthe program. There are two different phases
here: writing the program, and running the program (youtriggjfamiliar with this distinction in practice, but it does
often seem odd to handle both in code when you start impldnmgelainguages).

3.4 Modeling Programs

In the slideshow example, a “program” is just a talk, whiclitself a sequence of operations on slides. We need
to model talks as data. The word “sequence” suggests lists.w8'll view talks/programs as containing lists of
operations:

;; Atalk is a (make-talk listfcmd])
(define-structtalk (cmd9)

;; A program is a talk

Now that we've modeled programs, operations, control, atd through data definitions, we are ready to write
our first program (even though we can’t run it yet):

(definetalkl
(let ([intro-slide
(make-slide
" Hand Evals in DrScheme"
" Hand evaluation helps you learn how Scheme reduces programs to values")]
[arith-eg-slide
(make-slide
" Example 1"
(make-pointlis{list" (+ (x 2 3) 6)" " (+ 6 6)" " 12") fals@)]
[func-eg-slide
(make-slide
" Example 2"
(make-pointlis(list " (define (foo x) (+ x 3))" " (% (foo 5) 4)" " (x (+ 5 3) 4)" " (x 8 4)"
" 32") falsg)]
[summary-slide
(make-slide
" Summary: How to Hand Eval"
(make-pointlis{list " Find the innermost expression"
" Evaluate one step"
" Repeat until have a value")
true))])
(make-talk
(list (make-display intro-slide
(make-display arith-eg-slide
(make-display func-eg-slijle
(make-display summary-sligé))
This code useket instead oflocal. let is a bit more compact because you don't need to vdgtne on each case.

Thelet code is as if you wrotedefine intro-slide (make-slide . .)). We use local definitions here to keep the slides
internal to the talk (otherwise, we’'d prevent ourselvesfidefining anothesummary-slidéor a different talk.

Next class, we'll implement the prototype.

