Strings, Lists, and Files

Professor Hugh C. Lauer CS-1004 — Introduction to Programming for Non-Majors

(Slides include materials from *Python Programming: An Introduction to Computer Science*, 2nd edition, by John Zelle and copyright notes by Prof. George Heineman of Worcester Polytechnic Institute)

Reading Assignment

- Chapter 5:- Sequences
 - I.e., Strings, Lists, and Files

What is a String?

- String literal:-
 - Any piece of text enclosed in matching quotes
 - May be single or double quotes
- "This sentence, of course, is written in English."
- 'Esta frase se escrita en español.'
- Wir können auch in Deutsch und Französisch zu schreiben.
- "En fait, nous pouvons écrire les chaînes en Python en japonais, aussi."
- 'Pythonはあっても、私たちは日本語などのアジアの言語で書くことができます。'
- Anything that you can type in ANY language can be represented and stored as a string in Python!
 - Unicode standard

String literal (continued)

- A string literal is a constant, ...
- ... just like a numerical value
- Example:-

```
S = 'This is a string!'
```

- The name S refers to the value 'This is a string!'
 - Without the quotes
- Quotes must be paired
 - Either single or double

Operations on Strings

■ + — concatenation

```
S = "This is a string"
T = "and this is a another string"
U = S + ', ' + T + '.'
```

- What is the value of U?
- * repetition

```
Y = "yuck, yuckity, "
Y * 5
```

- [] indexing
 - Like lists

```
ន[0]
```

T[1]

U[2]

U[-1]

U[-2]

Note negative indexing for lists and strings counts from end!

Operations on Strings (continued)

Slicing

I.e., taking a subset of a string

End of substring —
This character is *not* included

Special cases

$$U1 = S[-7:-1]$$

$$U2 = S[-7:]$$

$$U3 = S[:-7]$$

• • •

Operations on Strings (continued again)

■ len(S) — length of string in characters

- for c in S:
 - Iterate thru the characters of the string S
- ord('c')
 - Get the Unicode character number of c
 - 'c' must be a string of length 1
- chr(n)
 - Return a string containing a single character, the ord of which is integer n

More about substrings and slicing

- Simple slices:-
 - **S**[2:3]
 - \$[5:-1]
 - **S**[7:]
- Slices with strides
 - \$ [:-1:2] # selects alternate characters
 - \$ [1: :3] # selects every third character
- Cannot find a way to extract specific characters from a string
- I.e.,
 - **S[1, 3, 7]** #Does not work in Python 3
 - There are deep, intricate methods for slicing
 - but beyond scope of this course

Useful string methods

- s.capitalize()
- s.count(sub)
 - Count occurrences of a substring
- s.find(sub)
 - Find a substring
- s.strip([chars])
 - Removes characters from beginning and end of string.
 - Defaults to white space
- s.replace(old, new)
 - Replaces instances of old substring with new substring
- # a zillion more
 - Some later in the course
- All return a new string
 - I.e., a modified copy of the original
 - The methods do not update original strings

Lists have methods, too!

- L.append()
 - Our friend
- L.sort()
 - Sorts elements in place. May be high-to-low or lowto-high
- L.reverse()
 - Reverses the list
- L.index(x)L.count(x)
 - Returns index of first occurrence of x in list or count of x's in list
- L.pop(i)L.remove(x)
 - Removes ith element (pop) or first occurrence of x
- See p. 345, also *Python documentation*

Reminder about lists and strings

- A list can be updated in place!
 - L1.append adds to end of L1
- Assignment creates another name for same list!
 - M1 = L1 \Rightarrow L1 and M1 are same list
 - Changes to one are visible in other
- A string can never be modified!
 - All methods return entirely new string
 - (Partial) copy of original

Slicing lists

- Simple slices:-
 - **L**[2:3]
 - **■** L[5:-1]
 - **■** L[7:]
- Slices with strides

```
L[:-1:2] # selects alternate list items
```

L[1: :3] # selects every third item

- Special note about slicing lists:—
 - L[start:end:stride] # creates a new list
 - # Same members as old list
 - ... but a separate, list
- **■** E.g.,
 - M = L[:] # creates clone of L, assigns to M
- Counter-intuitive
 - Based on what we know about assignment of lists!

Questions?

Definition — File

- A (potentially) large amount of information that lives a (potentially) very long time
- May be (much) larger than the amount of RAM in your computer
- (Usually) expected to outlive the running of your program
- (May be) expected to outlive the computer itself!
- Stored on
 - Hard drive
 - Flash drive
 - Spread out across multiple disks
 - Somewhere in the "cloud"
 - On some other medium

•

The rest of the *File* topic is postponed to Homework #5