From an IP Address to a Street Address: Using Wireless Signals to Locate a Target

Craig A. Shue (WPI), Nathanael Paul (USF) And **Curtis R. Taylor** (WPI)

WOOT '13 August 12, 2013 Washington, D.C.

Outline

- Motivation and Goals
- Current Approaches
- Our Approach
 Covert Wireless Sign
 - Covert Wireless Signaling
- Experiments
- Countermeasures
- Summary
- Future Development

Motivation

- Online criminals must be apprehended
 Child predators, online assailants
- Current work is not accurate or fast enough for many law enforcement purposes

– ISP subpoenas are slow.

 Most US homes use wireless networks (61% - 80% in recent studies [1])

Goals

- Fast localization
 - Under an hour would be excellent
- Precise localization
 - Street address or exact triangulation
- Avoid the need for ISP subpoenas
 - Best to avoid any special law enforcement power
- Universally applicable
 - Works on targeted computers, smartphones, tablets, etc.
- Use only commodity hardware and software
 - Keep approach inexpensive
- Minimally invasive/noticeable
 - Avoid alerts to all but most sophisticated targets

Current Approaches

- Wang *et al.* [2] used latency measurements to get within 690m radius circle.
 - US census: up to 33,000 people near NYC
 - Depends on many servers as landmarks for better accuracy
- Chen et al. [3] linked activity behind NATs.
- Area approximation based on IP prefix
 Not reliable

Our Approach

- Bridges gap between Wang and Chen.
- Assumes Wang's localization of 690m
- Uses covert wireless signals
- Consists of 3 components: the Observer, Signaler, and Target
 - Signaler sends communication to Target
 Observer physically searches for signal
- Code name: Marco Polo

Layout of Components

Covert Wireless Signals

- Concerned only with packet sizes
 - Packet length field is not encrypted
 - We found [750-1500] byte packets to be relatively uncommon.
- Shared packet sizes and timestamps in advance
 - Sharing the database allows signaling and observing to be separated without requiring the parties to communicate.

Signaling Requirements

- Access points (APs) do not require connections.
 - They send directly to the Target.
 - Used in many cases, including universities
- Network Address Translation (NAT) requires a connection
 - Lure Target through honeypots (FBI) purporting to offer contraband
 - Peer-to-Peer NAT traversal
 - Hidden iFrames

Signaling Mechanisms

- Must traverse NAT device, but prevent it from reaching user applications
- Signal can be sent out-of-band.
 - Use out-of-window TCP packets
 - Traverses NAT using existing mapping
 - Inconspicuously discarded by Target's kernel
- Out-of-band signals allow applicationagnostic signaling.

Manipulating NAT Devices

 Connection termination does not necessarily stop the packet flow

Router Model	Forwards Out-of- Window Packets	Forwards After Termination
Belkin F5D8235-4	yes	yes
D-Link DIR-655	yes	yes
Linksys E900	yes	no
Linksys WRT54G	yes	yes
Netgear WNDR3700	yes	yes

 In fact, the routers terminating transmissions violate RFCs 2663 and 5382

- Conducted two real-world experiments
 - Apartment setting
 - Residential neighborhood

Residential Neighborhood

- Target connected to HTTP server (Signaler) on WPI campus from home wireless network
- Target stayed connected for the duration of the experiment

– Approximately 40 minutes

- Observer physically traversed search region with laptop and wireless adapter
 - Also had pre-shared packet sizes and timestamps ahead of time.

Residential Neighborhood (continued)

Figure 1: Approximate 690m radius target was located in. Blue depicts path traveled.

Figure 2: True positives and false positives seen in outlined region.

Residential Study

- Narrowed to three houses
- Target signals blocked by obstacles
 - Wireless router between fireplace and TV
 - Target didn't want to "bias the experiment" by moving the router
- Experiment did not use enhancements
 - Directional antennas
 - Use of RSSI to determine signal power
- Potential for better results

Countermeasures

- Hardwire
- Proxy server
- Router packet size obfuscation

 However, doesn't protect burst patterns
- Anomaly detection
 - E.g., out-of-window packets

Implications

- Internet users are clearly not anonymous
- Anyone can do such tracking
- Legality
 - US federal judge ruled unencrypted data as being, "readily available to the general public", and thus is legal to record under an exception of the Wiretap Act [4].

Summary

- Ability to quickly locate wireless target
- Approach uses three components

 Signaler, observer, and target
- Uses existing software and hardware

 Cost effective
- Works on encrypted networks
- Uses covert wireless signals
- Works in different environments
- Raises privacy concerns

Future Directions

- More experiments
- Specialized equipment
 Directional antenna
- Transition to practical setting

Questions?

- Citations
 - 1) Business Wire, "Strategy analytics: A quarter of households worldwide now have wireless home networks," http://www.businesswire.com/portal/site/ home/ permalink/?ndmViewId=news view&newsLang=en&newsId= 20120404006331&div=-1063439563, April 2012.
 - 2) Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang, "Towards Street-Level Client-Independent IP Geolocation," in USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2011.
 - 3) Y.Chen ,Z.Liu, B.Liu ,X.Fu ,and W.Zhao, "Identifying mobiles hiding behind wireless routers," in IEEE INFOCOM, 2011, pp. 2651–2659.
 - 4) Dist. Court, ND Illinois, "In re Innovatio IP ventures, LLC patent litigation," MDL Docket No. 2303, Aug. 2012.

WiFi Police

