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ABSTRACT

Video streaming tra�c often dominates mobile wireless networks,

forcing Internet Service Providers (ISPs) to deploy video shaping to

identify and then manage tra�c during congested periods. Unfor-

tunately, the increasing use of end-to-end encryption (e.g., TSL/SSL)

makes it di�cult to identify video �ows even with deep packet

inspection. As an alternative, this paper presents Silhouette – a

real-time, lightweight video classi�cation method suitable for ISP

middle-boxes. Silhouette uses only �ow statistics (i.e., “shape”) for

video identi�cation making it payload-agnostic, e�ective for iden-

tifying video �ow even when encrypted. Preliminary results with

pre-classi�ed YouTube tra�c shows the promise of the Silhouette

approach, yielding high identi�cation accuracy over a range of

video content and encoding qualities.
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1 INTRODUCTION

Video tra�c is the king of the hill [10], accounting for around 50%

of tra�c volume over a U.S. tier-1 mobile Internet service provider

(ISP), and is projected to increase 11x by 2020, accounting for 75%

of all mobile data tra�c [3].

As a response to the deluge of video, mobile Internet service

providers deploy tra�c shaping or policing solutions to mitigate

the impact of video tra�c. For example, T-Mobile’s BingeOn plan

throttled video bitrates to 1.5Mb/s for unlimited plan customers [6],

and other U.S. mobile ISPs soon followed suit, limiting video rates
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to lower radio link utilizations. However, given the self-imposed

rate limits of video by encoding and the latency resilience of video

from bu�ering, there is the potential to smooth video rather than

just limit its rate, easing congestion without signi�cantly impact-

ing video quality [11].

But if such video shaping potential is to be realized, ISPs need

real-time, accurate identi�cation of video tra�c. Blindly pacing or

throttling �ows that may or may not be video can impair applica-

tion performance in general. Currently, in an attempt to identify

video �ows, ISPs often deploy deep packet inspection (DPI) en-

gines in network middle-boxes. These DPI engines typically rely

on packet content, such as host headers and Transport Layer Secu-

rity (TLS), but may also use Server Name Indications (SNIs) in or-

der to selectively apply shaping rules to �ows [12]. However, DPI-

based video detection has several drawbacks:

Easy to spoof.Kakhki et al. demonstrated a simple spoo�ngmethod

for BingeOnwith anHTTPproxy only several months after the ser-

vice became public available [6]. Li et al. [12] developed a library

that exposed tra�c classi�cation policies used inside mobile ISP’s

middle-boxes, making it even easier to circumvent tra�c classi�-

cation rules.

Ine�ectivewith encryption. End-to-end encryption, such as TL-

S/SSL, renders content-basedDPI engines ine�ective. Unfortunately,

over mobile networks today, nearly 70% of tra�c is protected by

TLS or SSL [10]. Thus, unless video end points are unencrypted or

are terminated at ISP proxies, payload-based identi�cation alone

will fail.

Ine�ective when source unknown. Many DPI engines build a

tra�c signature from training data sets where video sources are

known a priori. If the pre-trained DPI engine is presented with

video from a new source, it is unable to properly classify the tra�c

as video.

This paper presents Silhouette ,1 a video classi�cation method

that uses only the transport layer �ow characteristics (the “outline”

or “shape” of the �ow), not needing to inspect transport layer se-

quence numbers or application layer payloads. Silhouette delimits

�ows with the classic 5-tuple (source & destination IP addresses,

source & destination ports, and protocol type), but then records

only average transport layer payload size and data rate to decide

whether a given �ow is video or not. The Silhouette algorithms are

generic enough to work with HTTPS/TCP and QUIC/UDP-based

streaming and does not require prior collection and training, nor

run-time machine learning.

1A silhouette is a shape/outline of something visible against the background.
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Evaluation of Silhouette with 660 video traces – 66 video clips

with �ve di�erent resolutions (240p, 360p, 480p, 720p and 1080p)

and two di�erent protocols (TCP andQUIC) – yields an accuracy of

88%, with most of the unidenti�ed videos those with low encoding

rates.

The rest of the paper is organized as follows: Section 2 sum-

marizes related work; Section 3 provides background on YouTube

streaming; Section 4 presents Silhouette and an illustrative exam-

ple; Section 5 evaluates Silhouette with a broad range of YouTube

videos; and Section 6 summarizes our conclusions and presents

possible future work.

2 RELATED WORK

Identifying video �ows amid encrypted tra�c is not a new research

area, spawning at least dozens ofmachine learning (ML)-based pro-

posed solutions over the last two decades [8, 14, 15, 18]. Unfortu-

nately, while promising, ML techniques require a priori training

and are unusable for new, as yet unclassi�ed applications and can

be processing-intensive if run in real-time. Deep packet inspection

(DPI)-based approaches can achieve high accuracy [13], but the

high computational complexity and ine�ectiveness for encrypted

payloads make the DPI-based approach impractical for real-time

classi�cation.

Other research has focused onmeasuring videoQoE for encrypted

tra�c by passively monitoring the network and application statis-

tics [7]. For example, Dimopoulos et al. [5] infer stalling, average

video quality and quality variations by observing network statis-

tics. However, their method requires a data “cleaning” phase to �l-

ter out tra�c from domain names not related to the services. Thus,

although they infer theQoE of previously-identi�ed encrypted video

sessions, they do not address the problemof identifying video �ows

from encrypted tra�c.

Reed et al. [16] identify speci�c Net�ix videos using only the in-

formation provided by TCP/IP headers. However, their approach

requires a “�nger print” database built from a large number of

video clips,making it ine�ective for systems such as YouTubewhere

around 400 hours worth of new video are uploaded per minute.2.

Also, since their approach uses TCP sequence numbers, it is inef-

fective on video protocols with negative acknowledgments, such

as QUIC [1]. Lastly, ISPs typically do not need to know the exact

video content for treatment, but rather just need to correctly iden-

tify a �ow as video.

Other work has proposed treatment-based tra�c classi�cation [4,

11], where video tra�c, once identi�ed, is paced without signi�-

cantly degrading user QoE. However, their video detection is de-

signed for the real-time streaming protocol (RTSP) and may not

be accurate for modern video tra�c which predominantly streams

over HTTP.

3 YOUTUBE VIDEO STREAMING

For the past decade or so, most content providers have used HTTP

for video streaming. HTTP streaming combines the advantages of

�rewall penetration and easy network address translation [5, 9]

with TCP’s reliable packet delivery and congestion control. Even

QUIC over UDP is similar for video streaming with TCP + TLS +

2https://www.youtube.com/yt/about/press/

HTTP/2 [1]. YouTube HTTP video streaming has two Transport

Layer implementations: QUIC-enabled HTTP streaming and TCP-

enabled HTTP streaming. While Bhat et al. [2] �nd QUIC does not

necessarily improve performance over TCP-based streaming, from

the application layer perspective, QUIC-based YouTube streaming

should behave similarly to TCP-based YouTubeStreaming. Although

layers under the application may impact some �ow statistics (e.g.,

retransmission behaviors forQUIC and TCP), given the application-

layer commonality, the transport layer statistics should appear sim-

ilar. This motivates our search for a general classi�cation method

to detect HTTP video tra�c for both HTTPS/TCP and QUIC/UDP.

YouTube video streaming supports two di�erent approaches [5,

9]: progressive downloading for low quality videos (240p, 360p, and

480p) and HTTP adaptive streaming (HAS) for high de�nition (HD)

videos (720p and 1080p).

For streaming with progressive downloading, each video ses-

sion consists of two phases: startup and steady state. In startup, the

video session downloads rapidly to �ll the client player’s playout

bu�er as fast as possible. Once the bu�er is �lled, the video session

enters steady state and pauses downloading, resuming only when

the playout bu�er depletes.

For HAS, videos are split on the server into multiple segments,

each corresponding to 2 to 10 seconds of playback time. Each video

segment is encoded into a range of di�erent qualities [9]. The client

determineswhich segment to download as a function of the through-

put observed while downloading the previous segments and the

available seconds of playback in its playout bu�er [5].

In both progressive downloading and HAS, the video player

sends an HTTP request to the server to request the next video

segment. In HAS, the next segment may have a di�erent quality

encoding than the previous segment, while in progressive down-

loading, all segments have the same quality. Therefore, for HTTP

YouTube streaming, we expect to observe multiple HTTP requests

in the uplink direction.

Figure 1: YouTube Streaming with QUIC (Alpha Trailer)

Figure 1 shows the �rst 20 seconds of network behavior for a

QUIC/UDP, 1080p, 24 f/s YouTube video,3 the o�cial movie trailer

for Alpha 2018, using a Chrome browser4 on Linux. The x-axis is

the elapsed packet capture time and the y-axis is the transport layer

payload size – excluding UDP/IP headers. The red plus (+) symbols

are downlink packets and the blue circles are uplink packets.

The session is bursty and has large downlink packets but mostly

small uplink packets. However, someuplink packets are larger than

500 bytes, and these precede a series of large downlink packets.

3HTTPS/TCP streaming appears similar, but is not shown due to space constraints.
4Chrome version 63.0.3239.84.
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Based on YouTube streaming behavior described above, the large

uplink requests are likely video retrieval requests for the next video

segments – Silhouette leverages this in the next section.

4 SILHOUETTE

Inspired by our observations of YouTube video streaming in Sec-

tion 3, we propose Silhouette , a real-time heuristic method to de-

tect video streaming �ows based onApplicationData Units (ADUs)

and network statistics. This section describes Silhouette , which

consists of two algorithms (Section 4.1), and shows an example

with a YouTube streaming video (Section 4.2). A Python implemen-

tation of Silhouette is available online.5

4.1 Video Flow Identi�cation

A key aspect of Silhouette is identifying Application Data Units

(ADUs) (i.e., a video segment), depicted in Figure 1. When an ob-

server (e.g., a tra�c control middle-box) sees a packet sent from the

client (e.g., a video player) carrying a payload larger than a �xed

threshold Ladu , the observer makes a note of the time as the start

of a new ADU. Subsequently, the observer sums up the sizes of

the packet payloads in the opposite direction until the next large

request in the uplink direction. The sum of the payload sizes be-

tween the two requests is the size of the ADU (adu). The transport

layer packets without any payload (e.g., pure TCP ACKs) do not

carry any application layer information [11, 17] and are not used

to decide ADU boundaries or video segment sizes.

4.1.1 Feature Selection. Silhouette uses video segment size and

inter-request time as major video classi�cation features. Unlike

other ADU approaches [16, 17], Silhouette ADU size calculation

does not require segment sequence number analysis – this is ad-

vantageous in the presence of QUIC which supports multiplexing

and uses Negative Acknowledgments (NACK).

Silhouette also uses other network layer statistics common to

both HTTP/TCP and QUIC/UDP streaming to improve video iden-

ti�cation accuracy. These metrics include:

average downlink payload size (L̄): total downlink payload size

divided by the number of non-empty downlink packets. Average

payload size has been e�ective for tra�c di�erentiation in previous

work [4, 11].

data rate (R): cumulative transport layer payload size divided by

�ow elapsed time. Data rate is used to di�erentiate video from au-

dio, which has a considerably lower data rate (less than 192 kb/s).

4.1.2 Video Identification with ADU. The Silhouette algorithm

consists of two parts: detecting an ADU (Algorithm 1) and classify-

ing a video (Algorithm 2). Table 1 summarizes the default threshold

values used by Silhouette .

In HTTPS/TCP streaming, the �ow uplink data consists of re-

quests for video segments and TCP ACKs. In QUIC/UDP, the �ow

uplink data is more varied since QUIC sends statistics data with its

NACK/ACK packets in the uplink. Silhouette uses Lreq as a min-

imum threshold to �lter out small packets which are unlikely to

carry video segment requests (Line 8 in Algorithm 1). The Lreq

5http://perform.wpi.edu/downloads/#silhouette

default threshold is 500 bytes, tuned from observing hundreds of

YouTube video sessions for both HTTPS/TCP and QUIC/UDP.

ADUs alone are often not su�cient to di�erentiate video �ows

from audio �ows, especially for QUIC/UDP where video and au-

dio can be multiplexed in a single connection. Audio segments

can even be requested before the complete transfer of a video seg-

ment [9]. Thus, Silhouette uses Tv as a threshold for video ADU

size to di�erentiate smaller audio. The Tv default threshold is 100

KB, approximately 2 seconds of 240p video encoded at 400 kb/s.6

As discussed in Section 4.1.1, Silhouette uses average downlink

payload length (L̄) and data rate (R) to di�erentiate audio and video

tra�c. Silhouette uses Lv = 900 bytes as the default payload length

threshold for video ( 23 a typical MTU without network and trans-

port headers), and La = 450 bytes as the default payload length

threshold for audio ( 13 a typical MTU without network and trans-

port headers). Silhouette uses Rv = 300 kb/s as the default data

rate threshold for video, and Ra = 192 kb/s as the default data rate

threshold for audio.

Algorithm 1 Application Data Unit Detection

1: variables

2: adu: application data unit length.

3: l : transport layer payload length of pkt p .

4: Cadu : number of ADUs detected.

5: end variables

6: for each uplink packet p in �ow id do

7: l ← payload_len(p )

8: if l < Lreq then ⊲ Too small to be a request

9: return

10: end if

11: if adu ≥ Tv then

12: Cadu ← Cadu + 1

13: end if

14: adu ← 0

15: end for

Table 1: Thresholds used in Algorithms 1 and 2

Thresh. Description Defaults

Tv segment length threshold for video ADU 100 KB

Rv rate threshold for video 300 Kb/s

Ra rate threshold for non-video 192 Kb/s

Lv pkt length threshold for video 900 B

La pkt length threshold for non-video 450 B

Lreq pkt length threshold for request 500 B

Tadu number of ADUs threshold for video 3

Algorithm 2 consists of two parts: updating the statistics infor-

mation for the �ow and the current ADU (Lines 10 to 18), and iden-

tifying if the �ow is a video based on the statistics. Line 19 in Al-

gorithm 2 does the video identi�cation. Only if the �ow meets all

three conditions is it classi�ed as video: 1) data rate (R) is greater

than the minimum video rate threshold (Rv ), 2) average payload

length (L̄) is greater than the video payload length threshold (Lv ),

and 3) at least 3 video ADUs (Tadu ). Note, this last criteria is be-

cause HTTP streaming always has at least three uplink requests:

6YouTube recommends encoding 240p video at 400 kb/s.
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Algorithm 2 Video Flow Identi�cation

1: variables

2: c : number of pkts with transport layer payload.

3: l : transport layer payload length of pkt p .

4: te : elapsed time from 1st pkt.

5: L̄: average length of transport layer payload.

6: S : cumulative length of transport layer payload.

7: R : application layer throughput.

8: end variables

9: for each downlink packet p in �ow id do

10: l ← payload_len(p )

11: if l = 0 then ⊲ no application level data

12: return current_type (id )

13: end if

14: adu ← adu + l

15: c ← c + 1

16: S ← S + l

17: L̄ ← S/c ⊲ avg payload length

18: R ← S/te
19: if (R ≥ Rv ) ∩ (L̄ ≥ Lv ) ∩ (Cadu ≥ Tadu ) then

20: return true ⊲ likely video �ow

21: else if (S < Tv ) ∪ (R < Ra ) ∪ (L̄ < La ) then

22: return f alse ⊲ unlikely video �ow

23: else

24: returnmaybe ⊲ maybe video �ow

25: end if

26: end for

one to retrieve the manifest �le, one to retrieve the audio segment,

and one to fetch video segments.

Line 19 in Algorithm 2 identi�es a non-video �ow. A �ow is

marked as non-video if any of the following three conditions is

met: 1) the cumulative payload length (S) is less than one video

ADU (Ladu ); 2) the data rate (R) is less than the audio rate threshold

(Ra ); and 3) the average payload length (L̄) is less than the audio

payload length threshold (La).

If a �ow fails to be identi�ed as either video or non-video, it is

marked asmaybe, since it may be video, but it may not be. Usually,

some �le transfers fall into the maybe category (e.g., downloading

a modest-sided picture, such as a thumbnail) since they have only

one, large ADU.

4.2 Video Classi�cation Example

Table 3 shows an example of Silhouette in action, using a YouTube

QUIC/UDP streaming session of themovie trailer (Alpha). The video

is 159 second long, encoded at 1080p with 24 f/s. Before the trailer

begins, YouTube streams a 30 second advertisement. In order to

validate the classi�cation results, we manually enabled the “stats

for nerds” option in the player.

The video format id is 248 (webm video at 1080p), and the audio

format id is 250 (opus at 70 kb/s). For validation, we retrieved these

two clips using the YouTube Downloader7 tool, and con�rm that

the volume of Flow#20 and Flow#10 match with the downloaded

media �le size.

From Table 2, even the single video streaming session opens

24 connections. From the server name indications (SNIs), most of

the connections are not related to streaming: some are used for

7https://rg3.github.io/youtube-dl

account management, some are used for the advertisement, and

some are used to collect statistics. The �ows with SNIs of r*—sn-

*.googlevideo.commight carry media content, with the exception of

Flow #21 because its duration and volume are too small. The adver-

tisement was provided from the server r1—sn-9xp1vo-cvns, and the

Alpha trailer was provided from the server r6—sn-8xgp1vo-cvne. Sil-

houette correctly identi�es Flow #13 and Flow #20 as videowithout

checking their SNIs. Silhouette marks Flow #10 as maybe because

it does not have a valid video ADU and its volume and duration

are too small.

5 EVALUATION

Building upon the single-session classi�cation example from Sec-

tion 4.2, we conduct a large scale evaluation of Silhouette by: 1)

gathering a set of traces with a known number of video �ows (Sec-

tion 5.1), 2) analyzing the (in-)e�ectiveness of SNI-based classi�ca-

tion (Section 5.2), and 3) evaluating the e�ectiveness of Silhouette

(Section 5.3).

5.1 Ground Truth Collection

In order to assess Silhouettemore broadly, we gathered traces from

66 YouTube videos, repeatedly streamed over a range of encod-

ings and protocols. This provides the “ground truth” – real traces

known a priori to be video. We have made these traces available

online for other researchers.8

Before streaming, we setup a testbed to collect packet level traces

from a Linux desktop with a dual core Intel i5-4460 CPU, 32 GB

RAM, running the 4.11.0-rc2 kernel. The computer connected to

Internet with a broadband connection (150 Mb/s) through an IEEE

802.11 a/b/g/n router at a carrier frequency of 2.4 GHz. The desktop

computerwas close enough to thewireless router to achieve amax-

imum TCP downlink throughput of 50 Mb/s, which is more than

fast enough to stream 1080p video, the highest encoding rate tested.

The computer uses Google Chrome (v63.0.3239.84) for streaming.

A custom Python script automatically plays each video through

the Chrome browser, using tcpdump to collect full packet traces.

To cover a range of typical video �ows, we stream all 66 videos

from the “2018 Movie Trailers” YouTube play list,9 with �ve dif-

ferent encoding qualities (240p, 360p, 480p, 720p, and 1080p) and

two protocols (HTTPS/TCP and QUIC/UDP) – in total 660 video

sessions. We manually enable the “stats for nerds” option in the

YouTube player for each session to record the video server name

and the format id for validation purposes. In order to avoid possi-

ble browser caching, we clear all history data after every session

and restart the browser.

5.2 Server Name Indication

The server name indication (SNI) can be used to infer the possi-

ble role/content of each �ow, a method used by major U.S. mobile

ISPs [12].

Although our scripts initiated only 660 streaming sessions, they

spawned over 15,000 �ows. YouTube uses the additional �ows for

other tasks such as managing accounts (e.g., {youtube|google}.com),

third party advertising (e.g., {adservice|doubleclick}.com), collecting

8http://perform.wpi.edu/downloads/#silhouette
9Play list id: PLh2QSchbA3pnM2pTPI6mkj4kyhJfp_v1h, January 2018
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Table 2: Sample Results of Silhouette

start duration vol. rate avg. pkt

�ow (sec.) (sec.) (KB) (kb/s) len.(B) #ADUs SNI video

0 0.00 228.07 414 14 820 2 www.youtube.com false

1 0.00 0.17 4 187 830 0 fonts.googleapis.com false

2 0.00 42.15 7 1 336 0 googleads.g.doubleclick.net false

3 0.00 0.17 4 195 830 0 fonts.gstatic.com false

4 0.01 3.14 61 155 1117 0 i.ytimg.com false

5 0.04 28.23 15 4 1256 0 www.gstatic.com false

6 0.04 1.29 16 104 1012 0 s.ytimg.com false

7 0.04 42.05 5 0 313 0 www.google.com false

8 0.06 41.83 71 13 1192 0 yt3.ggpht.com false

9 0.07 0.18 4 178 830 0 clients1.google.com false

10 0.69 1.06 926 6990 1341 0 r6—sn-8xgp1vo-cvne.googlevideo.com maybe

11 1.14 0.33 6 152 706 0 securepubads.g.doubleclick.net false

12 1.53 0.29 5 140 647 0 www.googleapis.com false

13 1.62 7.97 8251 8282 1349 10 r1—sn-8xgp1vo-cvns.googlevideo.com true

14 2.10 30.39 10 2 542 0 pagead2.googlesyndication.com false

15 2.34 15.15 4 2 589 0 ad.doubleclick.net false

16 2.34 47.25 5 1 263 0 ade.googlesyndication.com false

17 2.40 0.57 32 460 1251 0 tpc.googlesyndication.com false

18 32.16 9.73 6 5 534 0 www.googleadservices.com false

19 34.56 35.57 69 15 1229 0 i1.ytimg.com false

20 41.58 88.90 32137 2892 1351 24 r6—sn-8xgp1vo-cvne.googlevideo.com true

21 41.64 0.19 9 421 834 0 r2—sn-8xgp1vo-xfgy.googlevideo.com false

22 118.43 0.28 6 182 732 0 clients2.google.com false

23 200.36 17.18 180 83 1215 0 i.ytimg.com false

statistics (e.g., {googleapis|gstatic.com}), and hosting thumbnail im-

ages (e.g., {ytimg|ggpht}.com).

Our previous measurement study showed that only �ows with

SNIs like r*—sn*.googlevideo.com carry video content [10]. Figure 2

shows a cumulative distribution function (CDF) for �ow level sta-

tistics grouped into two categories: �ows containing SNIs match-

ing r*—sn*.googlevideo.com are marked as “googlevideo”, and the

rest are marked as “others”. The left graph is the distribution of

�ow volumes and the right graph is the distribution of �ow dura-

tions. Note that for both graphs, the x-axis is in logscale.

Based on the �ow volume (Figure 2(a)), not all �ows with an

SNI of r*—sn*.googlevide.com carry video content – �ows with a

payload less than 1 MB are unlikely to be video. While �ow vol-

ume can be accurate for identifying video, unfortunately by itself

�ow volume is a poor feature for real-time classi�cation since it

can only be de�nitive at the end of the �ow. For similar reasons,

�ow duration (Figure 2(b)) is also a poor feature for real-time clas-

si�cation. Moreover, some �ows with SNIs with youtube.com only

terminate when the Chrome browser is closed – thus, there is not

a strong correlation between video length and the duration of the

�ows. This shows that SNI-based approaches alone are not able to

di�erentiate video from other types tra�c if the same server has

multiple roles (e.g., providing FTP and video streaming services on

the same host).

In summary, SNIs alone are ine�ective for di�erentiating video/non-

video �ows.

5.3 Silhouette

Table 3 summarizes the Silhouette classi�cation results for our ground

truth dataset. The videos are broken down by streaming protocol

(“HTTPS/TCP” and “QUIC/UDP”, the main columns) and then by

video encoding (the rows). For each protocol, the classi�cation re-

sults for the 66 video �ows are tabulated: video (video correctly

classi�ed as video), maybe (video not classi�ed as video, but not

mis-classi�ed as non-video), and non-video (videomis-classi�ed as

non-video). The “%” column depicts the percentage of video �ows

correctly classi�ed as video. The �nal row tabulates the results for

all video encoding types.

Figure 3 depicts the accuracy of Silhouette for the ground-truth

dataset, with the x-axis the video encoding and the y-axis the ac-

curacy percent. The overall accuracy for Silhouette is 87.9%, and

for video qualities over 480p, accuracy reaches 95%. Silhouette ac-

curacy is lowest for HTTPS/TCP 240p video (24%) where 39 out

of the 66 videos are marked as maybe. Looking more closely, for

240p and 360p videos, HTTPS/TCP-based streaming experiences

long idle durations that bring down average �ow rates below the

video rate threshold (Rv = 300 kb/s).

Although there are multiple connections in one single YouTube

session (as the example in Table 2 shows), Silhouette does not clas-

sify any �ows outside of SNI r*—sn-*.googlevideo.com as video —

i.e., Silhouette has a zero false positive rate.

6 CONCLUSIONS

Accurate, real-time classi�cation of encrypted video is becoming

increasingly important given the dominance of HTTP-streaming

video and the growth in end-to-end encryption.
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Figure 2: Flow Statistics in “Ground Truth” Data Set

Table 3: Video Detection Results

Enc. HTTPS/TCP QUIC/UDP
Type vid. maybe non-vid. % vid. maybe non-vid. %

240p 16 39 11 24 63 3 0 95
360p 49 14 3 74 65 1 0 98
480p 63 3 0 95 66 0 0 100
720p 63 3 0 95 66 0 0 100
1080p 65 0 1 98 66 0 0 100

All 256 59 15 77 326 4 0 99

0

10

20

30

40

50

60

70

80

90

100

240p 360p 480p 720p 1080p all

A
c
c
u

ra
c
y
 (

%
)

Video Resolution 

HTTPS

24

74

95 95
98

77

QUIC

95
98 100 100 100 99

Figure 3: Silhouette Accuracy

This paper presents Silhouette , a heuristic video identi�cation

method suitable for YouTube streaming. Silhouette classi�es based

only on the �ow “shape” in terms of data rates and payload lengths,

making it suitable for bothHTTPS/TCP-based andQUIC/UDP-based

streaming. Since Silhouette does not require any application layer

information nor server name indication (SNI), it is e�ective even

for encrypted videos. Moreover, because Silhouette does not clas-

sify based on packet inter-arrival times, it should be robust for all

link types. Silhouette is light-weight – it does not require any high-

CPU intensive processing (e.g., deep packet inspection (DPI)) nor

external cross layer signaling, making it suitable for ISP middle-

boxes that need to classify and then treat video �ows.

Evaluation with a “ground truth” dataset of 660 YouTube videos

covering a range of content and encoding rates shows classi�ca-

tion accuracy near 90% and closer to 100% for high-de�nition videos.

While Silhouette should be e�ective regardless of provider (e.g.,

Net�ix versus YouTube), futurework includes evaluation overmore

content providers. Futurework also includes a real-time implemen-

tation using a Linux Tra�c Control (TC) service, and deployment

into middle-boxes at an ISP to detect and treat video �ows.
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