A Quality Planning Model for Distributed Multimediain the Virtual Cockpit

Mark Claypool
John Ried|
{claypool,riedl } @cs.umn.edu

University of Minnesota
Computer Science Department

ABSTRACT

Tomorrow’s multimedia applications will stress all parts of
a computer system. To determine the computer resources
needed to meet application demands we have developed a
new capacity planning model that is based on application
quality as perceived by the user. We have applied our model
to a Distributed Interactive Simulation flight simulator called
the Virtual Cockpit. We investigate the quality of the Virtual
Cockpit on existing networks and processors and predict the
effects of high-speed networks and high-performance pro-
cessors on Virtual Cockpit quality. We find processor per-
formance is the current bottleneck in application quality for
the Virtual Cockpit, but that higher-speed networks, such as
ATM, will be needed to meet network requirements after two
to three generations of processor improvement.

Keywords:

INTRODUCTION

Today, there are many exciting new distributed multimedia
applications. Although current computer systems are often
powerful enough for one user, the recent growth of networks
has presented the opportunity for multiple users to collabo-
rate using one application. Today, two to tens of users can
communicate through a computer audioconference. Tomor-
row, tens to hundreds of neuroscientists will explore and con-
tribute to a distributed brain database [1]. Soon, tens, hun-
dreds and perhaps even thousands of soldiers will train for
combat in a distributed interactive simulation [4]. With high
multimedia system requirements and many users, today’s and
tomorrow’s applications will stress all parts of a computer

0This work is sponsored in part by the Army High Performance Com-
puting Research Center under the auspices of the Department of the Army,
Army Research Laboratory cooperative agreement number DAAH04-95-2-
0003/contract number DAAHO04-95-C-0008, the content of which does not
necessarily reflect the position or the policy of the government, and no offi-
cial endorsement should be inferred.

Communications/Networking/\VOD Applications

system.

The study of computer resources needed to meet expected
computer demand is called capacity planning. Capacity plan-
ning often includes system configuration guidelines. How-
ever, system configuration guidelines limit their usefulness
by not considering the user perception of the application qual-
ity. We have developed a new capacity planning model that
is based on application quality as perceived by the user. Like
other models, our model incorporates users, applications and
hardware into a measure of performance. We enhance the
model by including a set of user requirements to get a quan-
titative measure of quality as perceived by the user. We can
then quantitatively predict changes in quality that a user will
perceive when the application or hardware is changed.

We start with a distributed, multimedia application. We model
the user, application and computer system. We perform some
detailed experiments to measure the fundamental components
of the application. We validate the detailed experiments through
larger experiments. Lastly, we change the model components
to reflect alternate configurations and predict the effects on
application quality.

Using the above methods, we have applied our model to the
specifications and preliminary performance results of a flight
simulator called the Virtual Cockpit [19]. The Virtual Cock-
pit is a low-cost, manned flight simulator of an F-15E built
by the Air Force Institute of Technology. A soldier flies the
Virtual Cockpit using the hands-on throttle and stick, while
the interior and out-the-window views are viewed within a
head-mounted display. The Virtual Cockpit research was un-
dertaken to build an inexpensive system for use as a tactics
trainer at the squadron level that could participate in a Dis-
tributed Interactive Simulation (DIS).

DIS is a virtual environment being designed to allow net-
worked simulators to interact through simulation using com-
pliant architecture, modeling, protocols, standards and data-
bases. The DIS system must be flexible and powerful enough
to support increasingly large numbers of simulators. The
Advanced Research Projects Agency (ARPA) estimates the
need for exercises with 100,000 simulators.

Our objective is to enhance our understanding of the perfor-

mance bottlenecks that arise in the design of a multi-person,
distributed multimedia application. Among the factors we
investigate are the performance of the Virtual Cockpit on ex-
isting networks and processors and the effects of high-speed
networks and high-performance processors on Virtual Cock-
pit quality.

RELATED WORK
In this section, we show how our research complements that
of research in related areas.

Quality Application quality research focuses on the user’s
perception of the applications they are running. Quality re-
searchers have developed some models for measuring appli-
cation quality [15, 20]. Researchers have studied some fac-
tors that affect application performance such as latency and
frame rate. Some of the many applications studied include
videoconferences and teleoperation [18].

We build upon the reported acceptable tolerance levels for
multimedia applications in computing our measures of qual-
ity. We expand upon the work of application quality re-
searchers by extending quality models to a new multimedia
application.

Geographic Information Systems A Geographic Infor-
mation System (GIS) is a computer system capable of as-
sembling, storing, manipulating, and displaying geographi-
cally referenced information, i.e. data identified according
to their locations. GIS are often processor and network in-
tensive. GIS research includes ways to effectively distribute
processing time on high performance parallel computer sys-
tems while obtaining enough fidelity to support realistic sim-
ulations [21], and developing network software architectures
to support large scale virtual environments [17].

GIS are the basis for many vehicle simulators. We use per-
formance numbers from the GIS used by the Virtual Cockpit,
Software Systems’ MultiGen, in our experiments.

Capacity Planning The study of computer resources need-
ed to meet expected computer demand is called capacity plan-
ning. Many experts agree that the main goal of capacity
planning is to maintain a balance between business growth
and needs and explicit or implicit service level objectives of
computing support. In other words, capacity planning is a
method used for projecting computer workload and planning
to meet the future demand for computing resources in a cost-
effective manner.

Capacity planning is a difficult task because no clear eco-
nomic framework exists to do a cost-benefit analysis of infor-
mation technology. There have been several general frame-
works established in an attempt to manage the growth of in-
formation technology [11, 13]. There are also many specific
capacity planning solutions designed for specific platforms
and intended to plan for specific workloads [24]. Generally,
it is still easier to find that a configuration will not support a

specific level of service than to predict it will.

We develop a form of capacity planning that emphasizes the
quality of the application as perceived by the user, enabling
designers to tradeoff application performance and system cost.

Networks Networks connect the components of distributed
applications. Unlike centralized applications of the past, dis-
tributed multimedia applications run over one or more net-
works. Network researchers have studied theoretical limits
of past and current networks, as well as the practical lim-
its under normal workloads. Networks that have been stud-
ied include Ethernet [22], high-speed gigabyte networks [8],
Asynchronous Transfer Mode (ATM) networks [16] and the
Internet. Network researchers have also studied how best to
use a network’s available bandwidth. Network utilization re-
search includes the effects of delay jitter on application per-
formance and transport mechanisms on packet-switched net-
works [12].

We use quality planning to determine the effects of high-
speed networks on the performance of the Virtual Cockpit.

Benchmarks The process of performance comparison for
two or more systems by measurements is called benchmark-
ing, and the workloads used in the measurements are called
benchmarks. As early as 1971, Lucas provided a survey cate-
gorizing benchmarks [14]. SPEC, the Standard Performance
Evaluation Corporation, has sought to create objective series
of applications-oriented tests, which can serve as common
reference points and be considered during the evaluation pro-
cess [5]. The SPEC benchmark numbers are the ratio of the
time to run the benchmarks on a reference system and the
system being tested.

We use SPEC results to make predictions in our quality plan-
ning model. Performance results from our research may also
be useful to other benchmark researchers.

MODEL

Our model for the quality of a distributed multimedia appli-
cation incorporates the user, application and hardware. Fig-
ure 1 depicts our model.

Users We start with the application users. People interact
with touch, sight and hearing. We would like computers to
come as close to real-life interaction as possible, even en-
hancing personal interaction by allowing it across both time
and space. The users of the Virtual Cockpit are F-15 pilots
training as members of a team. They need the flight simula-
tion to be realistic enough to prepare them for real flight and
the response time from other simulators to be fast enough to
provide practical “live” training.

Application The application is the software the users will
run. The Virtual Cockpit has been used by the ARPA in a se-
ries of DIS exercises called Zealous Pursuit. See the Virtual
Cockpit paper for more details on the application [19].

(Users

<Applications

Quality

(User Requirements

(System Requirements

(Archi tecture

N AN A/

(Hardware

Figure 1: Quality Planning Model. Our model of application
performance incorporates users, applications, user requirements,
system requirements, architecture and hardware. In addition, we
include a measure of application quality as perceived by the user.

User Requirements The application is founded on a set of
user requirements that need to be fulfilled for the application
to be effective for the user. These include information such
as frame rate and frame size, acceptable latency and jitter and
tolerance of data loss. The user requirements are the user’s
interface to our model. The requirements they specify may
drive the selection of the underlying system in order to make
the application acceptable for the user.

System Requirements The user requirements impose a
series of requirements on the system. Some of these include
network bandwidth, disk throughput and processor power.
The method to determine the system requirements from the
user requirements depends upon the application and, to some
extent, its implementation. For instance, the workstation can
make rendering frames the highest priority, possibly forsak-
ing sending and receiving updates to do so. Or, sending and
receiving updates can be the top priority at the expense of a
lower frame rate. Packets can be compressed before sending,
reducing network bandwidth but possibly increasing proces-
sor load from compression and decompression.

Architecture Architecture is the structure of the distributed
program which determines the location of data and the distri-
bution of the processing. Architecture can greatly affect the
application. For example, a Virtual Cockpit that supports all
soldiers on one central mainframe would perform differently
than one in which each soldier had a dedicated workstation
connected by a network.

Hardware Given the system requirements and architecture,
the hardware needed to support the application can be de-
termined. Hardware might range from a low-end worksta-
tion with a T1 network up to a high-performance workstation
with an ATM network.

Quality The variations in hardware, architecture, system
requirements, user requirements and the application all effect
the application quality as perceived by the user. The accept-
ability of the application to the user is determined by how
close the application performance matches the user require-

ments. We are developing a quantitative measure of the dif-
ference between application performance and user require-
ments. We call this the application quality.

QUALITY

The quality of a distributed multimedia application is a mea-
sure of the application’s acceptability to the user. Although
we often think of a multimedia application as a continuous
stream of data, the computer system handles multimedia in
discrete events. An event may be receiving an update packet
or displaying a rendered frame on the screen. The quantity
and timing of these events give us measures that affect appli-
cation quality. We have identified three measures that deter-
mine quality for most distributed multimedia applications:

e Latency. The time it takes information to move from the
server through the client to the user we call latency. Latency
decreases the effectiveness of applications by making them
less like real-life interaction.

o Jitter. Distributed applications usually run on non-dedi-
cated systems. The underlying networks are often packet-
switched and the workstations are often running multiple pro-
cesses. These non-dedicated systems cause variance in the
latency, which we call jitter. Jitter can cause gaps in the play-
out of a stream such as in an audioconference, or a choppy
appearance to a video display for the Virtual Cockpit.

e Data Loss. Any data less than the amount determined by
the user requirements we call dataloss. Data loss takes many
forms such as reduced bits of color, jumbo pixels, smaller
images, dropped frames and lossy compression. Data loss
may be done voluntarily by either the client or the server in
order to reduce load or to reduce jitter and/or latency.

There may be additional measures that affect application qual-
ity that are application specific. For instance, DIS simulators
use “dead reckoning” algorithms to compute position. Each
simulator maintains a simplified representation of other sim-
ulators and extrapolates their positions based on their last re-
ported states. When a simulator determines that other sim-
ulators cannot accurately predict its position within a pre-
determined threshold, it sends a state update packet. The
state update contains the correct position and orientation as
well as velocity vectors and other derivatives that the other
simulators can use to initiate a new prediction. Figure 2 de-
picts the difference between the actual flight path of a sim-
ulator and the dead reckoning flight path computed by the
other simulators.

Dead reckoning creates an additional quality measure spe-
cific to DIS applications:

e Missed Updates. If a simulator is unable to send the update
or process an incoming update, the accuracy of the simula-
tion decreases.

Figure 3 shows the effects of missed updates on accuracy.
The horizontal line is the position threshold, set at 1 meter.
When the inaccuracy surpasses the threshold, an update is
sent, bringing inaccuracy back to 0. Inaccuracy increases

/ Deviation Exceeds Threshold
Update Received = Actua Path
=>» Dead Reckoning Path

Figure 2: Actual Path versus Dead Reckoning Path. The solid
line represents the actual flight path of the simulator. The grey
line represents the flight path as computed by the other simulators
using a simple dead-reckoning algorithm based only on direction
and velocity. The dashed line represents a time when the perceived
path deviated from the actual path by more than a pre-set threshold.
At this time, a packet updating position, orientation and direction
is sent and the dead reckoning resumes from this new posture.

Dead Reckoning Accuracy vs. Time

3r ' low-order ——
high-order -----
- missed 1 update
VAN
3 2+ missed / -
S 2 updates *
< /
ks
4
L thrshld |-/ PR R]
Q i /! | |
= oo ’ | I
0 1 2 3 4
Seconds

Figure 3: Dead Reckoning Accuracy. The horizontal line is the
position threshold, set at 1 meter. The triangular-shapes represent
areas of inaccuracy. When they reach the threshold, an update is
sent, bringing inaccuracy back to 0. Inaccuracy increases by as
much as a meter on the average for each update missed. These
missed updates are shown by the taller triangles.

one meter on average for each update missed. These missed
updates are shown by the taller triangles. The total inaccu-
racy for the simulation is represented by the sum of the areas
of the triangles. The larger the sum, the more inaccurate the
simulation. As we would expect, consecutive missed updates
affect accuracy more than non-consecutive missed updates.
There are two different simulations depicted in the graph.
One uses a high-order dead reckoning algorithm while the
other uses a low-order dead reckoning algorithm. The to-
tal accuracy is independent of the dead reckoning algorithm
used; changing the dead reckoning algorithm only affects the
number of updates sent and not the total accuracy.

Ideally, we would like there to be no latency, jitter, data loss
or missed updates. Unfortunately, on a variable delay net-
work and non-dedicated computer this can not be achieved.
To compute the application quality, we use the above quality
components in a process depicted by Figure 4. The user re-
quirements for the application define the acceptable latency,

Acceptable

Latency
Jitter

@)
:t * Data Loss
Mi d Upd
1ssed Updates Quallty Metric

Latency H
Jitter Quallw
-> Data Loss
Missed Updates

System Projected

Application

Figure 4: The process for computing application quality. The
user defines the acceptable latency, jitter, data loss and missed up-
dates and the system determines the actual values. Based on the
acceptable values specified in the user requirements, a quality met-
ric computes the application quality from the actual values.

jitter, data loss and missed updates. The system determines
the projected latency, jitter, data loss and missed updates. Ac-
ceptable and projected data are fed into a quality metric for
the application. The quality metric is a function, based on
the acceptable components and dependent upon the projected
components, that computes the application quality.

In order to quantitatively compare application quality for dif-
ferent system configurations, we need a reasonable quality
metric. To form our quality metric, we build upon the work
of Kleinrock and Naylor [15]. Using each quality compo-
nent as one axis, we create a 4-dimensional quality space.
We place the best quality value for each axis at the origin
and scale each axis so that the user-defined minimum accept-
able values have an equal weight. An instantiation of the
application lies at one point in this space. We compute the
application quality by taking the Euclidean distance from the
point to the origin. All points inside the region defined by the
user-defined minimums have acceptable quality while points
outside do not.

There can be many possible quality metrics for a given ap-
plication. In fact, there may be many quality metrics that
agree with a user’s perception of the application. Mean opin-
ion score (MOS) testing can be used to determine if a metric
agrees with users’ perception. The MOS is a five-point scale
where a MOS of 5 indicates perfect quality and a score of
4 or more represents high quality. MOS has been used ex-
tensively in determining the acceptability of coded speech.
MOS testing is beyond the scope of this paper, so we cannot
be certain our quality metric fits user perceptions. However,
the metric we chose has several useful characteristics. First,
it treats the axes symmetrically which seems appropriate in
the absence of user studies to the contrary. Second, the Eu-
clidean distance fits our intuition about changes in quality:
the measure increases total quality with any increase in qual-
ity along one axis. Third, the metric produces a convex re-
gion of acceptable quality, which avoids certain anomalies.
The rest of our model is independent of the quality metric
chosen. If new metrics are developed, they can be used in
place of our quality metric.

One limitation to quality metrics is that after scaling, the
upper limits on the axes have different characteristics. The
“data loss” and “missed updates” have a finite upper-limit
of 100%, while the “delay” and “jitter” axes each have an
infinite bound. Comparing application quality for two differ-
ent configurations at the upper-limit of any of the axes may
not match user perception. Fortunately, this limitation only
arises when comparing two unacceptable configurations. The
metric is most valuable for determining whether a configu-
ration provides “acceptable” or “unacceptable” application
quality.

Note that the user-defined acceptability limits along each axis
are greatly dependent upon the application and must be re-
evaluated for each new applicatio. For example, the accept-
able latency for an audio broadcast application of a radio pro-
gram may be far more than the acceptable latency for the
Virtual Cockpit.

For the parameters in our metric, we define the acceptable de-
lay, jitter, data loss and missed updates for the Virtual Cock-

pit:

. Latency is the time from when an update is sent until it is
processed and displayed by the other simulators. The DIS
steering committee had defined latency as 100 to 300 mil-
liseconds as acceptable for DIS applicationsn [4]. We use
300 milliseconds as the maximum acceptable latency for the
Virtual Cockpit.

. Jitter is the variance in the latency. We assume 10% jitter is
the maximum acceptable for the Virtual Cockpit.

. For data loss, we note that research in remote teleoperator
performance states that task performance is virtually impos-
sible below a threshold of 3 frames per second [18]. We use
3 frames per second as the minimum acceptable frame rate.
The conventional rate of 30 frames per second would provide
a more realistic simulation, possibly influencing training ef-
fectiveness. We assume that frame rates above 30 frames per
second provide no more useful data.

. For missed updates, we assume the same thresholds of 1 me-
ter position and 3 degrees of accuracy used in SimNet [9].
We assume the simulation must be 95% accurate to be ac-
ceptable.

Figure 5 depicts the quality space for the Virtual Cockpit.
The user requirements summarized in Table 1 determine a re-
gion of acceptable application quality, depicted by the shaded
region. All points inside the shaded region have acceptable
quality, while those outside the region do not. An instantia-
tion of the application and the underlying computer system
would lie at one point in this space. Note that the graph does
not show the fourth axis of quality, missed updates, because
of the difficulty in depicting the 4th dimension.

Latency 300 milliseconds
Jitter 10%
Frame Rate 3 frames/second
Position Threshold 1 meter
Orientation Threshold 3 degrees
Accuracy 95%

Table 1: User Requirements for the Virtual Cockpit.

Virtual Cockpit Quality
Data L oss

Limit of Acceptable|
Data L oss
(3 frames/sec)

Jitter

Limit of Acceptable Jitter
(10%)

Limit of Acceptable Delay

Dela
(300 ms) Y

Figure 5: Virtual Cockpit Quality. The axes represent application
quality components. The limits along the axes are defined by the
user. The shaded region depicts acceptable application quality. An
instantiation of the Virtual Cockpit and the underlying computer
system would lie at one point in this space. If the point was inside
the shaded region, the application would have acceptable quality.

MICRO EXPERIMENTS

Experiments that measure processor performance of compo-
nents of an application we call micro experiments. We do
micro experiments to allow us to predict the effects of sys-
tems on applications built with those components. The fun-
damental components for the Virtual Cockpit are: send a
dead reckoning update packet, receive update packets, up-
date dead reckoning status, read GIS information from the
database, perform dead reckoning, render the frame and dis-
play the frame.! After carefully measuring the processor,
network and disk loads induced by each component, we can
predict the load of an application built with those compo-
nents. Changes in application configuration or changes in
hardware are represented by modifying the individual com-
ponents and observing how that affects the application per-
formance. Examples of previous micro experiments appear
in[2, 3].

The fundamental components of the Virtual Cockpit are de-
picted in Figure 6. Send is the processor load for sending up-
dates to the other soldiers. Receive is the processor load for
receiving updates. Update is the processor load for updating
dead reckoning status structures. Read is the processor load
for reading from a file. Reckon is the processor load for do-

1we assume that the user interface contributes an insignificant amount
of processor load.

Display

Receive

Read
Per Frame
Reckon

[Per Soldier]
Render

Receive
Per Frame

Display]

Per Packe
Update

Per Packe

Per Frame

Figure 6: Virtual Cockpit software scheme. The 3-D boxes above
all contain a fundamental component of the Virtual Cockpit. The
larger, dashed boxes place the fundamental components into con-
ceptual groups.

ing a dead reckoning computation to determine the position
of another soldier. Render is the processors load for gener-
ating a frame to be displayed. Display is the processor load
for displaying the frame on the screen. Send is done once for
each update packet sent. Receive and Update are done once
for each update packet received. Read, Render and Display
are done once per frame. Reckon is done once per soldier per
frame.

We use a high-order dead reckoning algorithm as an upper
bound on the processor load required.

We compared the load for sending and receiving unicast pack-
ets to that of multicast so we could better analyze the bene-
fits of multicast in Section “Predictions” below. The update
packet size is 144 bytes, as defined by the DIS standard [17].

We used a process that increments a long integer vari-
able in a tight loop to measure the processor load for the com-
ponents in the Virtual Cockpit model. We did not use the
Unix time command because the reporting of per-process
processor consumption by most operating systems is unreli-
able. Often, the system gives an incorrect account of inter-
rupt level processing and fails to capture processor degrada-
tion from Direct Memory Access (DMA).

To obtain a baseline for our counter, we ran the counter pro-
cess on a machine with a minimum of system processes run-
ning. This gave us the processor potential for the machine.
We then ran the counter process with each of the fundamental
components. The difference between the bare count and the
count with the component process is the component-induced
load.

We ran our experiments on a dedicated network of SGI Per-
sonal Iris workstations. Each workstation had a 20 MHz 1P6
R3000 processor, 16 Mbytes RAM and 96 Kbytes cache.

|| Component | msec | Low | High | Per Unit

Display 0.194 0.193 0.195 frame
Read 0.000327 0.000325 0.000329 byte
Render 305 304 306 frame
Update 0.00813 0.00808 0.00818 soldier
Compute 0.949 0.940 0.958 soldier
Unicast Receive 0.579 0.230 0.928 update
Multicast Receive 112 111 113 update
Unicast Send 1.58 157 1.59 update
Multicast Send 157 156 158 update

Table 2: Processor load breakdown for the fundamental compo-
nents of the Virtual Cockpit. Send is the processor load for sending
updates to the other soldiers. Receive is the processor load for re-
ceiving updates. Update is the processor load for updating dead
reckoning status structures. Read is the processor load for reading
from a file. Reckon is the processor load for doing a dead reckoning
computation to determine the position of another soldier. Render is
the processors load for generating a frame to be displayed. Display
is the processor load for displaying the frame on the screen. “Low”
and “High” are the lower and upper bounds respectively from the
95% confidence interval.

Table 2 gives the processor times for the Virtual Cockpit
components. All points are shown with a 95% confidence
interval. The times for multicast send and unicast send are
indistinguishable at the 95% confidence level. The time for
multicast receive is significantly more than the time for uni-
cast receive.

Although we present only the measurements of the proces-
sor load, in the past, workstation performance has scaled
with processor performance [10]. We assume that processor
performance will continue to reflect the workstation perfor-
mance.

MACRO EXPERIMENTS

Experiments that measure performance of applications built
with micro experiment components we call macro experi-
ments. We do macro experiments to validate micro experiment-
based predictions of application performance. Examples of
macro experiments appear in [2, 3].

We ran macro experiments for the Virtual Cockpit model for
2-15 simulated soldiers. Each soldier ran a Virtual Cockpit
on an SGI Personal Iris, one workstation per soldier. The
workstations were connected by an Ethernet. Each Virtual
Cockpit sent 3 updates packets per second, the average for
most vehicles in a typical DIS exercise [17].

Our micro experiments measured the processor load for the
fundamental components of the Virtual Cockpit. Using these
measurements, we can predict the number of occurrences of
each of the fundamental components in the macro experi-
ments. For example, in a 10 second, two-soldier simulation,
we would expect each soldier to send and receive 30 update
packets. Table 3 gives the predicted versus actual count for

|| Component | Predicted | Actual ||
Receive 27 25
Send 3 3
Update 27 25
Compute 27 28
Render 3 3
Display 3 3
Read 6265 6354

Table 3: Component predictions for a Virtual Cockpit simula-
tion with 9 Soldiers. “Predicted” are the predicted performance
numbers based on the performance of the individual components.
Actual are the actual performance numbers reported in the experi-
ment. All predicted values are for one second.

all the Virtual Cockpit components for an experiment with 9
soldiers. “Predicted” are the predicted numbers of times each
component occurred per second based on the performance of
the individual components. “Actual” are the actual numbers
of times each component was recorded per second in the ex-
periment. Other macro experiments with 2-15 soldiers had
similar results, but we do not show them here to avoid redun-
dancy.

All of the predicted performance results are within 10% of
the actual performance results. We regard future compar-
isons of predicted performance results that combine the Vir-
tual Cockpit components into alternate configurations to be
significantly different if they vary by more than 10%.

Our micro experiments give us the performance results for
the fundamental components of the Virtual Cockpit. Our
macro experiments validate our ability to combine the val-
ues from our micro experiments into accurate Virtual Cock-
pit predictions.

PREDICTIONS

By modifying the fundamental Virtual Cockpit components,
we can predict performance on alternate system configura-
tions. This allows us to evaluate the potential performance
benefits from expensive high-performance processors and high-
speed networks before installing them. Moreover, we can in-
vestigate possible performance benefits from networks and
processors that have not yet been built.

Our approach for evaluation of each alternative system is the
same: We modify the parameters of our performance model
to fit the new system, then evaluate the resulting model to
obtain performance predictions. These analyses are intended
to provide a sense of the relative merits of the various alter-
natives, rather than present absolute measures of their perfor-
mance.

Network
We first investigate the network bandwidth requirements for
a DIS simulation. Network bandwidth requirements depend

Network Bandwidth vs. Soldiers

1000 —
100
°
5 10
(8]
&
- 1
& A
= O .
- unicast (3 updates/sec) ——
frame rate (30 updates/sec) ----
maximum (17 updates/sec) -----
) average (3 updates/sec) -
1 10 100 1000 10000
Soldiers
Figure 7: Network Bandwidth versus Soldiers. This graph

shows the predicted network bandwidth as the number of soldiers
increases. The upward sloping lines are the predicted bandwidth
for the frame rate, maximum rate, and average update rate. The
steeply sloped line is the network bandwidth required for unicast
with an average update rate. The horizontal lines are the maximum
bandwidths for a T1, Ethernet and ATM network. Both the hori-
zontal axes and vertical axes are in log scale.

upon the frequency with which each Virtual Cockpit broad-
casts its position. In the absence of dead reckoning, each
simulator would have to send an update every frame, for a
maximum of 30 updates per second. However, with dead
reckoning, the average rate is 3 updates per second [17], with
a maximum of 17 updates per second [9].

Figure 7 depicts the predicted network bandwidth versus the
number of soldiers in a Virtual Cockpit exercise. The upward
sloping lines are the predicted network bandwidth for up-
dates sent at the frame rate without dead reckoning, the max-
imum update rate with dead reckoning, and average update
rate with dead reckoning. The line with the steepest slope
represents the network bandwidth required for a unicast sim-
ulation at an average update rate. The horizontal lines are the
maximum bandwidths for a 1.5 Mbps T1, 10 Mbps Ethernet
and 155 Mbps ATM network.

Without dead reckoning, a T1 network becomes saturated at
about 50 soldiers and an Ethernet at about 200 soldiers. With
dead reckoning and the maximum update rate, a T1 can sup-
port nearly 100 soldiers and an Ethernet can support nearly
400 soldiers. With dead reckoning and the average update
rate, a T1 can support about 400 soldiers and an Ethernet can
support over 2000 soldiers. We use the maximum update rate
for situations in which we are concerned about peak network
bandwidth. We use the average update rate in situations in
which we are concerned about network throughput.

Multicast is crucial for soldier scalability. Even at the av-
erage update rate, a Virtual Cockpit exercise using unicast
rapidly exceeds the bandwidth available on T1 and Ethernet
networks.

Processor

Existing networks are capable of supporting many soldiers,
but what about existing processors? We investigate the per-
formance results Virtual Cockpit exercises with more power-
ful processors.

We compare the performance of the SGI Personal Iris to
other processors by comparing performance results from the
Systems Performance Evaluation Cooperative (SPEC) bench-
mark integer suite. In past work, we have found SPEC results
correlate inversely well with execution times for processor-
intensive tasks. Since the largest Virtual Cockpit component,
render, is largely processor-intensive, we assume that the Vir-
tual Cockpit processor performance will correlate well with
SPEC results. The SPEC int92 value for a SGI Personal Iris
is 22.4 and the SPEC int92 value for the 150 MHz SGI Indigo
2 is 92.2 [6]. Roughly, the Indigo 2 is 6.5 times faster than
the Personal Iris, so we assume it does all the Virtual Cock-
pit components measured in Section “Micro Experiments”
6.5 times faster.

Swartz et al. did experiments to measure the effects of frame
rate on on the ability to perform tasks through Unmanned
Aerial Vehicles (UAVS) [23]. UAVs are used to conduct a
variety of reconnaissance missions with human operators in-
terpreting the transmitted imagery at ground stations. The ex-
periments found that human performance with 4 frames per
second is significantly better than 2 frames per second, but
not consistently worse than 8 frames per second. Therefore,
we assume a rate of 4 frames per second in our processor
load predictions.

We break the processor load into three pieces: send, receive
and display (see Figure 6 for the components in each piece).
Figure 8 depicts the predicted processor load in seconds on a
SGI Personal Iris versus the number of soldiers. The graph
reads from the bottom. The load of each piece is the sum of
the pieces below it. Thus, the total processor load is indicated
by the “display” line at the top. The horizontal lines are the
maximum processor throughputs for SGI Personal Iris” and
SGI Indigo 2s, as indicated.

The processor is the bottleneck. The SGI Personal Iris is
unable to support even the minimal frame rate for any sol-
diers. Processors significantly more powerful than SGI Per-
sonal Iris’ are needed to realize the army’s goals of hundreds
and thousands of distributed soldiers interacting in a simula-
tion. Indigo 2s, powerful workstations, can support adequate
frame rates while communicating with 1000s of other sol-
diers.

Quality

If we have a system with the more powerful processors re-
quired for acceptable frame rate, we can investigate the pre-
dicted user perception of the Virtual Cockpit — what is the
application quality? In order to predict application quality,
we need to predict latency, jitter, data loss and missed up-

Processor Load vs. Soldiers

1000 ; ; ;
display —
B 100 + receive ————- _
S send -----
5
ﬁ INdigo2 [i
] .
5 -
2 0.1 - .
o
S
g
A 0.01 - 1
0.001 L 1 L
1 10 100 1000 10000

Soldiers

Figure 8: Processor Load versus Soldiers. This graph depicts the
predicted processor load in seconds on a SGI Personal Iris versus
the number of soldiers. The graph reads from the bottom. The
load of each piece the sum of the pieces below it. Thus, the total
processor load is indicated by the “display” line at the top. The
horizontal lines are the maximum processor throughputs for an SGI
Personal Iris and an SGI Indigo 2. Both axes are in log base 10
scale.

dates for a variable number of soldiers.

The macro experiments we ran allow predictions of latency
and jitter. We compute latency by adding: the time between
frames; the time spent sending the update; and the network
propagation time. Figure 9 shows the latency data and Fig-
ure 10 shows the jitter data for a variable number of sol-
diers. We obtain predictions for latency and jitter by fitting
the recorded data points with a least-squares line fit. The
curves in the graphs are 95% confidence intervals around the
lines.

Data loss and missed updates for the Virtual Cockpit are de-
termined by the processor load. If the processor power is
limited there are two choices: reduce processor load by re-
ducing the frame rate (data loss), or reduce processor load
by dropping updates (missed updates).? The processor load
for updates is low compared to the processor load for dis-
playing frames. For example, in a simulation exercise with
10 soldiers, a Virtual Cockpit would need to drop about 300
updates in order to equal the processor load for dropping 1
frame. Itis likely that dropping 300 updates would adversely
affect quality greater than dropping 1 frame. Future work
is needed to completely understand the quality tradeoffs be-
tween dropping frames and retaining updates, but in this pa-
per, we assume the processor processes all updates before
rendering frames.

To compute application quality, we use the methods described
in Section “Quality” above. We examine the application qual-
ity for Virtual Cockpit exercises with SGI Indigo 2s because
SGI Personal Iris” were incapable of achieving the minimum
acceptable frame rate. Figure 11 depicts our quality predic-

2There may be a way of using voluntary data loss in the GIS database
engine to reduce processor load, but we leave that as future work.

Latency in Milliseconds

330

325

300

Latency Predictions vs. Soldiers

correlation .99

8

10

Soldiers

12

14

16

Figure 9: Latency versus Soldiers. The above graph shows la-
tency graphed versus the number of soldiers in the Virtual Cockpit
simulation. The middle line is a least-squares line fit. The correla-
tion is 0.99. The curves are 95% confidence intervals around that

line.

Jitter in Milliseconds

20

19

18

17

Jitter Predictions vs. Soldiers

8

10

Soldiers

12

14

16

Figure 10: Jitter versus Soldiers. The above graph shows jitter
graphed versus the number of soldiers in the Virtual Cockpit simu-
lation. The middle line is a least-squares line fit. The correlation is
0.87. The curves are 95% confidence intervals around that line.

Quality Predictions vs. Soldiers
T T T

10 | s

Quality

Unacceptable Quality
Acceptable Quality -~

Ol 1 1 1
10 100 1000
Soldiers

10000

Figure 11: Virtual Cockpit Quality versus Soldiers. The middle
line represents predicted application quality as the number soldiers
increases. The upper and lower lines represent best and worst case
quality scenarios respectively. The horizontal line marks the ac-
ceptable/unacceptable quality limit.

tions.

SGI Indigo 2s provides acceptable quality for Virtual Cockpit
exercises with about 500 soldiers. Notice that in Figure 8, we
had predicted that the Indigo 2s could support 1000 soldiers
when we analyzed the frame rate alone. Application quality
is determined by latency, jitter and missed updates as well as
frame rate. Latency, jitter and missed updates all increase as
the number of soldiers increase.

High-performance Processors
The quality of the Virtual Cockpit was improved by using
high-performance processors. Is there further benefit from
higher-performance processors?

We assume the network has sufficient bandwidth to handle
all necessary updates in order to minimize the effects of the
network. We compare the quality of the Virtual Cockpit with
SGI Personal Irises and SGI Indigo 2s to the quality of the
Virtual Cockpit with processors 15 times more powerful than
the Indigo 2.3

Figure 12 shows the quality predictions for the Virtual Cock-
pit with different processors. The top curve is an SGI Per-
sonal Iris. The second curve is an SGI Indigo 2. The bottom
curve is a processor 15 times more powerful than the Indigo
2. The horizontal line represents the acceptable quality limit.
The “knee” in the curve for the 15x processor is where the
processor decreases the frame rate in order to handle the up-
dates from the other soldiers.

High-performance processor are crucial for acceptable Vir-
tual Cockpit quality. SGI Personal Iris’ are unable to deliver
acceptable application quality. More powerful SGI Indigo 2s
can deliver acceptable application quality for up to 500 sol-
diers. 15x’s provides better application quality than Indigo

3Processor performance approximately doubles every year [10]. The 15x
processor will come along in about 8 years.

Quality Predictions vs. Soldiers
100 g T T T

10 F e

Quality

=

- ROESEEREREY

Processor decreases frame rate —7"

01 1 1 1
100 1000
Soldiers

10000

Figure 12: Virtual Cockpit Quality versus Soldiers. The three
curves represent the quality predictions for three different proces-
sors. The top curve is an SGI Personal Iris. The second curve is
an SGI Indigo 2. The bottom curve is a processor 15 times more
powerful than the Indigo 2. The horizontal line represents the ac-
ceptable quality limit.

2s and can deliver acceptable application quality for up to
7000 soldiers.

High-speed Networks

With the Virtual Cockpit running on processor 15 times more
powerful than the SGI Indigo 2, a T1 network will become
saturated while supporting just 100°’s of soldiers. How much
quality benefit will then be gained from a high-speed net-
work? We compare the quality of the Virtual Cockpit with
an Ethernet to that of the Virtual Cockpit with an ATM net-
work. The ATM network transmits the update packets faster
(155 Mbits/second versus 10 Mbits/second for an Ethernet).
Past work has found jitter and missed updates in the ATM
network are the same as jitter and missed updates in the Eth-
ernet [7]. We assume jitter and missed updates remain the
same in high-speed networks. In order to make the network
bandwidth more significant, we assume the maximum 17 up-
dates per second.

Figure 13 shows the quality predictions for the Virtual Cock-
pit with different networks. The top curve is the quality pre-
dictions for an Ethernet. The lower curve is the quality pre-
dictions for an ATM. The steep increase in the Ethernet curve
occurs when the Ethernet becomes saturated. At this point,
the Virtual Cockpit begins to increasingly miss updates. The
first bend in the ATM curve occurs when the processor must
decrease the frame rate in order to process all updates. The
second bend in the ATM curve occurs when the ATM be-
comes saturated.

High-speed networks are unimportant for the Virtual Cockpit
quality until existing networks reach saturation. The quality
prediction curves for the Ethernet and the ATM are indistin-
guishable until the Ethernet becomes saturated. At this point,
the ATM network greatly increases scalability. The network
as the present bottleneck in application quality has been re-

10

Quality Predictions vs. Soldiers

100 T T T
Ethernet —
ATM -
10 ¢ ATM 3
saturated j
2 N
R =
(o4

01} - \ 4
Processor decreases frame rate]
001 1 1 1

1 10 100 1000
Soldiers

10000

Figure 13: Virtual Cockpit Quality versus Soldiers. The two
curves represent the quality predictions for an Ethernet and an ATM
network. The horizontal line represents the acceptable quality limit.

moved by the DIS use of dead reckoning and multicast.

CONCLUSIONS

Multi-person distributed multimedia applications stress all
parts of a computer system. We have developed a quality
planning model for distributed multimedia applications that
allows us to investigate potential bottlenecks in application
quality. We have applied our model to the Virtual Cockpit,
a flight simulator used in Distributed Interactive Simulation
(DIS). DIS is a virtual environment within which simulators
may interact through simulation at multiple networked sites.
In order for DIS to be effective for military training, simula-
tion exercises must support up to 100,000 soldiers.

Our objective in identifying application bottlenecks is to un-
derstand the system limits that will prevent applications from
meeting users’ needs. After identifying each bottleneck, we
explore ways to reduce the effect of the bottleneck through
improving system resources. We then explore the new bot-
tlenecks that arise in the enhanced system. Our analysis at
each stage is likely to overstate system performance, because
we assume maximum possible performance of each system
component. However, the bottlenecks we identify are likely
to be bottlenecks in practice, and the design principles sug-
gested by the analysis should ameliorate these bottlenecks in
practice.

In applying our model to the Virtual Cockpit, we discovered:

o High-performance processors are crucial for acceptable Vir-
tual Cockpit quality. Low-end processors are unable to de-
liver acceptable application quality. More powerful proces-
sors can deliver acceptable application quality for 1000’s of
soldiers.

e High-speed networks are unimportant for Virtual Cockpit
quality until existing networks reach saturation. T1 and Eth-
ernet networks will saturate after 2-3 generations of proces-
sor improvement. The network as the present bottleneck in
application quality has been removed by the DIS use of dead

Virtual Cockpit Quality
SGI Personal Iris, Ethernet, Unicast
Data L oss
[0 Acceptable Quality

Limit of Acceptable
DatalLoss
(3 frames/sec)

SGI Personal Iris, ATM @ Application Instance

../SGI Personal Iris, Ethernet

Jitter
Limit of Acceptable Jitter
(10%)

SGlI Indigo 2, Ethernet

Limit of Acceptable Delay

Dela
(300 ms) y

Figure 14: Virtual Cockpit Quality. The user defines the accept-
able latency, jitter and data loss. These values determine a region of
acceptable application quality, depicted by the shaded region. All
points inside the shaded region have acceptable quality, while those
outside the region do not. Four Virtual Cockpit instantiations are
shown as points in this space. Note that the graph does not show
the fourth axis of quality, missed updates, because of the difficulty
in depicting four dimensions.

reckoning and multicast.

o Dead reckoning greatly benefits the Virtual Cockpit qual-
ity, primarily due to its reduction of network load. The small
update message size plus the infrequent number of updates
reduces the network load over a scheme where all simulators
update their position with each frame. With dead reckoning,
a T1 can support 10’s of simulators, an Ethernet can support
100’s of simulators and an ATM can support 1000°s of simu-
lators.

e Multicast is a crucial to maintain reduced network band-
width. Even at the average update rate, a Virtual Cockpit ex-
ercise using unicast rapidly exceeds the bandwidth available
on T1 and Ethernet networks.

We depict the above conclusions in Figure 14. The figure
shows our measure of quality for the Virtual Cockpit. The
user defined acceptable latency, jitter, data loss and missed
updates determine a region of acceptable application quality,
depicted by the shaded region. Each point is an instantia-
tion of the application and the underlying computer system.
All points inside the shaded region have acceptable quality,
while those outside the region do not. There are four 100-
soldier Virtual Cockpit instantiations shown: SGI Personal
Iris” with Ethernet, SGI Personal Iris” with ATM, SGI Indigo
2s with Ethernet and SGI Personal Iris” with Ethernet and
unicast. Only the Indigo 2s with Ethernet have acceptable
application quality. The ATM does not significantly improve
the quality of the Virtual Cockpit with the Personal Iris’. Us-
ing unicast instead of multicast greatly decreases the appli-
cation quality for the Personal Iris” with Ethernet. Note that
the graph does not show the fourth axis of quality, missed up-
dates, because of the difficulty in depicting four dimensions.
We chose to eliminate the missed updates axis because the
predicted number of missed updates is constant for all sys-
tem configurations.

11

FUTURE WORK

An interesting processing decision arises in the processing
of dead reckoning updates. Dead reckoning allows a trade-
off among three factors: network bandwidth, processor load
and simulation accuracy. After a dead reckoning computa-
tion, a simulator will have the perceived position of other
simulators. This perceived position will be inaccurate up to a
pre-set threshold. Lower thresholds provide a more accurate
representation of other simulators, but increase the number
of updates required, causing more network load. Higher or-
der dead-reckoning decreases the number of updates sent, but
increases processor load. Our model could be used to deter-
mine the affect on application quality for the various dead
reckoning parameters, possibly recommending a specific ac-
curacy and algorithm to use.

Applications that have changing user requirements present
another challenge. For example, users doing remote problem-
solving via a video link, may want to maximize frame rate at
the expense of frame resolution while they are identifying the
location of the problem. Once the problem is located, they
may want to maximize frame resolution at the expense of
frame rate (perhaps even wanting a still image) to best iden-
tify the problem. As presented, our model does not allow
specification of dynamic user requirements. One possible so-
lution would be to apply a separate quality planning model to
each set of user requirements specified. The model that had
the poorest quality for a given system configuration could
then be examined more closely to determine the application
quality bottleneck within.

For some applications, there is potential for interaction ef-
fects among the quality events. For example, 3-dimensional
graphics applications have multiple factors affecting users’
perception of objects and different combinations of require-
ments may Yyield satisfactory results. Such applications may
even have a non-convex region of acceptable quality. Future
research into new quality metrics appropriate for these appli-
cations may be required.

We assume that processor performance will continue to re-
flect workstation performance. If other workstation compo-
nents, in particular the data bus, do not continue to scale with
processor performance, future work would include extend-
ing our model to discover which workstation components are
bottlenecks to application quality.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful comments. Their suggestions have helped improve
the quality of this work.

REFERENCES
1. J. Carlis, J. Riedl, A. Georgopoulos, G. Wilcox,
R. Elde, J. H. Pardo, K. Ugurbil, E. Retzel, J. Maguire,
B. Miller, M. Claypool, T. Brelje, and C. Honda. A
zoomable DBMS for brain structure, function and be-

10.

11.

12.

havior. In International Conference on Applications of
Databases, June 1994.

. M. Claypool, J. Riedl, J. Carlis, G. Wilcox, R. Elde,

E. Retzel, A. Georgopoulos, J. Pardo, K. Ugurbil,
B. Miller, and C. Honda. Network requirements for 3D
flying in a zoomable brain database. IEEE JSAC Spe-
cial Issue on Gigabit Networking, 13(5), June 1995.

. Mark Claypool and John Riedl. Silence is golden? The

effects of silence deletion on the CPU load of an au-
dio conference. In Proceedings of IEEE Multimedia,
Boston, May 1994.

. The DIS Steering Committee. The DIS vision - a map

to the future of distributed interactive simulation. Tech-
nical report, Institute for Simulation and Training, May
1994,

. Standard Performance Evaluation Corporation. SPEC

primer.

July 1994. The SPEC primer is frequently posted to
the newsgroup comp.benchmarks. SPEC questions can
also be sent to spec-ncga@cup.portal.com.

. gsnow@clark.edu Gary Snow. Specint and specfp 1992

numbers. comp.benchmarks, November 1993.

. Joe Habermann and John Riedl. Using real-time prior-

ities to eliminate jitter in a multimedia stream. Techni-
cal Report Technical Report, University of Minnesota
Department of Computer Science, January 1996. The
author can be contacted about this paper at haber-
man@Icse.umn.edu.

. Charles Hansen and Stephen Tenbrink. Impact of giga-

bit network research on scientific visualization. |EEE
Computer, May 1993.
. Edward P. Harvey and Richard L. Shaffer. Capabil-

ity of the distributed interactive simulation networking
standard to support high fidelity aircraft simulation. In
Proceedings of the 13th Interservice/Industry Training
Systems Conference, 1993.

John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, Inc., 1990.

Magid Igbaria and Snehamay Banerjee. Computer ca-
pacity planning management: Definitions and method-
ology. Journal of Information Technology, (9):213 -
221, 1994,

K. Jeffay, D.L. Stone, and F.D. Smith. Transport
and display mechanisms for multimedia conferencing
across packet-switched networks. Computer networks
and |SDN Sytems, 26(10):1281 — 1304, July 1993.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Sanjay K. Jha and Bruce R. Howarth. Capacity plan-
ning of LAN using network management. In Pro-
ceedings of Conference on Locacl Computer Networks,
pages 425 — 430, Washington D.C., 1994.

Henry C. Lucas Jr. Performance evaluation and mon-
itoring. Computing Surveys, 3(3):78 — 91, September
1971.

Leonard Kleinrock and William E. Naylor. Stream traf-
fic communication in packet switched networks: Des-
tination buffering considerations. |EEE Transactions
on Communications, 30(12):2527 — 2534, December
1982,

Mengjou Lin, Jenwei Hsieh, David H.C. Du, Joseph P.
Thomas, and James A. MacDonald. Distributed net-
work computing over local atm networks. ATM LANS:
Implementation and Experience with An Emerging
Technology, 1995.

Michael R. Macedonia, Michael J. Zyda, David R.
Pratt, Paul T. Barham, and Steven Zeswitz. NPSNET:
A network software architecture for large scale virtual
environments. Presence, 3(4):265— 287, October 1994,

Michael J. Massimino and Thomas B. Sheridan. Tele-
operator performance with varying force and visual
feedback. In Human Factors, pages 145 — 157, March
1994,

W. Dean McCarty, Steven Sheasby, Philip Amburn,
Martin R. Stytz, and Chip Switzer. A virtual cockpit
for a distributed interactive simulation. IEEE Computer
Graphics and Applications, January 1994.

Radhika R. Roy. Networking contraints in multime-
dia conferencing and the role of ATM networks. AT& T
Technical Journal, July/August 1994.

Shashi Shekhar, Sivakumar Ravada, Greg Turner, Dou-
glas Chubb, and Vipin Kumar. Load balancing in
high performance GIS: Partitioning polygonal maps. In
Proceedings of the Internationall Symposium on Large
Soatial Databases, 1995.

John F. Shoch and Jon A. Hupp. Measured performance
of an Ethernet local network. Communications of the
ACM, 23(12):711-720, December 1980.

Merryanna Swartz and Daniel Wallace. Effects of
frame rate and resolution reduction on human perfor-
mance. In Proceedings of 1S& T's 46th Annual Confer-
ence, Munich, Germany, 1993.

Brian L. Wong. Capacity Planning for Solaris Servers.
Prentice Hall, 1996.

