
Comparison of TCP Congestion Control

Performance over a Satellite Network

Saahil Claypool1, Jae Chung2, and Mark Claypool1

1 Worcester Polytechnic Institute, Worcester, MA, USA
{smclaypool,claypool}@wpi.edu
2 Viasat, Marlborough, MA, USA

jaewon.chung@viasat.com

Abstract. While satellite Internet bitrates have increased, latency can
still degrade TCP performance. Realistic assessment of TCP over satel-
lites is lacking, typically done by simulation or emulation, if at all. This
paper presents experiments comparing four TCP congestion control al-
gorithms – BBR, Cubic, Hybla and PCC – on a commercial satellite
network. Analysis shows similar steady state bitrates for all, but with sig-
nificant differences in start-up throughputs and round-trip times caused
by queuing of packets in flight. Power analysis combining throughput
and latency shows during steady state, PCC is the most powerful, due
to relatively high throughputs and consistent, relatively low round-trip
times, while for small downloads Hybla is the most powerful, due to fast
throughput ramp-ups. BBR generally fares similarly to Cubic in both
cases.

1 Introduction

Satellites are an essential part of modern networking, providing ubiquitous con-
nectivity even in times of disaster. There are 2100+ satellites in orbit, a 67%
increase from 2014 to 2019 [2]. Improvements in satellite technology have in-
creased transmission capacities more than 20x with the total capacity of planned
Geosynchronous orbit satellites over 5 Tb/s.

Geosynchronous orbit satellites have about 300 milliseconds of latency to
bounce a signal up and down [8], a hurdle for TCP protocols that use round-
trip time communication to advance their data windows. TCP congestion control
algorithms play a critical role determining throughput in the presence of network
latency and loss. A better understanding of TCP congestion control algorithm
performance over satellite networks is needed in order to assess challenges and
opportunities that satellites have to better support TCP moving forward.

However, there are few published studies measuring network performance
over actual satellite networks [17], with most studies either using just simula-
tions [3] or emulations with satellite parameters [1, 11, 18, 19].

This paper presents results from experiments that measure the performance
of TCP over a commercial satellite Internet network. We compare four TCP con-
gestion control algorithms, chosen based on their representative approaches to



2 S. Claypool et al.

congestion control: default loss-based Cubic [15], bandwidth-delay product-based
BBR [16], utility function-based PCC [11], and satellite-optimized Hybla [4]. Our
network testbed and experiments are done on the Internet, but are designed to
be comparable by interlacing runs of each protocol serially to minimize temporal
differences and by doing 80 bulk downloads for each protocol to provide for a
large sample. In addition, a custom ping application provides several days worth
of round-trip time and lost packet data for a baseline satellite network with no
other traffic.

Analysis of our “quiet” network gives baseline satellite loss and round-trip
time characteristics. Analysis comparing the four algorithms show differences
in throughput, round-trip times and retransmissions during steady state and
start-up phases, with power providing a combined measure of throughput and
delay.

The rest of this report is organized as follows: Section 2 presents related work,
Section 3 describes our methodology, Section 4 analyzes the data, and Section 5
summarizes our conclusions and future work.

2 Related Work

Caini and Firrinielli [4] propose TCP Hybla to overcome the limitations TCP
NewReno flows have when running over high-latency links (e.g., a Satellite).
TCP Hybla modifies the standard congestion window increase with an extension
based on the round-trip time. In Hybla slow-start, cwnd = cwnd + 2ρ − 1 and

in congestion avoidance cwnd = cwnd + ρ2

cwnd
, where ρ = RTT/RTT0. RTT0 is

fixed at a “wired” round-trip time of 0.025 seconds. Hybla is available for Linux
as of kernel 2.6.11 (in 2005).

Ha et al. [15] develop TCP Cubic as an incremental improvement to earlier
congestion control algorithms. Cubic is less aggressive than previous algorithms
in most steady-state cases, but can probe for more bandwidth quickly when
needed. TCP Cubic has been the default in Linux as of kernel 2.6.19 (in 2007),
Windows 10.1709 Fall Creators Update (in 2017), and Windows Server 2016
1709 update (in 2017).

Cardwell et al. [16] provide TCP Bottleneck Bandwidth and Round-trip time
(BBR) as an alternative to Cubic’s (and Hybla’s) loss-based congestion control.
BBR uses the maximum bandwidth and minimum round-trip time observed to
set the congestion window size (up to twice the bandwidth-delay product). BBR
has been deployed by Google servers since at least 2017 and is available for Linux
as of kernel 4.9 (end of 2016).

Dong et al. [11] propose TCP PCC that observes performance based on
small measurement “experiments”. The experiments assess throughput, loss, and
round-trip times with a utility function, adopting the rate that has the best
utility. PCC is not generally available for Linux, but Compira Labs3 provided
us with a Linux-based implementation.

3 https://www.compiralabs.com/



TCP over a Satellite 3

Cao et al. [5] analyze measurement results of BBR and Cubic over a range
of different network conditions, showing that the relative difference between the
bottleneck buffer size and bandwidth-delay product dictates when BBR performs
well. Our work extends this work by providing evaluation of Cubic and BBR in
a satellite configuration, with round-trip times significantly beyond those tested
by Cao et al.

Obata et al. [17] evaluate TCP performance over actual (not emulated, as
is typical) satellite networks. They compare a satellite-oriented TCP conges-
tion control algorithm (STAR) with NewReno and Hybla. Experiments with
the Wideband InterNetworking Engineering test and Demonstration Satellite
(WINDS) network show throughputs around 26 Mb/s and round-trip times
around 860 milliseconds. Both TCP STAR and TCP Hybla have better through-
puts over the satellite link than TCP NewReno – we evaluate TCP Hybla, but
there is no public Linux implementation of TCP STAR available.

Wang et al. [19] provide preliminary performance evaluation of QUIC with
BBR on an emulated a satellite network (capacities 1 Mb/s and 10 Mb/s, RTTs
200, 400 and 1000 ms, and packet loss up to 20%). Their results confirm QUIC
with BBR has throughput improvements compared with TCP Cubic for their
emulated satellite network.

Utsumi et al. [18] develop an analytic model for TCP Hybla for steady state
throughput and round-trip time over satellite links. They verify the accuracy
of their model with simulated and emulated satellite links (capacity 8 Mb/s,
RTT 550 ms, and packet loss rates up to 2%). Their analysis shows substantial
improvements to throughput over that of TCP Reno for loss rates above 0.0001%

Our work extends the above with comparative performance for four TCP
congestion control algorithms on an actual, commercial satellite network.

3 Methodology

We setup a testbed, measure network baseline loss and round-trip times, serially
bulk-download data using each algorithm, and analyze the results.

3.1 Testbed

We setup a Viasat satellite Internet link so as to represent a client with a “last
mile” satellite connection. Our servers are configured to allow for repeated tests
and comparative performance by consecutive serial runs with all conditions the
same, except for the change in TCP congestion control algorithm.

Our testbed is depicted in Figure 1. The client is a Linux PC with an Intel
i7-1065G7 CPU @ 1.30GHz and 32 GB RAM. There are four servers, each with
a different TCP congestion control algorithm: BBR, Cubic, Hybla and PCC.
Each server has an Intel Ken E312xx CPU @ 2.5 GHz and 32 GB RAM. The
servers and client all run Ubuntu 18.04.4 LTS, Linux kernel version 4.15.0.

The servers connect to our University LAN via Gb/s Ethernet. The campus
network is connected to the Internet via several 10 Gb/s links, all throttled to 1



4 S. Claypool et al.

Fig. 1. Satellite measurement testbed.

Gb/s. Wireshark captures all packet header data on each server and the client.
The client connects to a Viasat satellite terminal (with a modem and router)
via a Gb/s Ethernet connection. The client’s downstream Viasat service plan
provides a peak data rate of 144 Mb/s.

The terminal communicates through a Ka-band outdoor antenna (RF am-
plifier, up/down converter, reflector and feed) through the Viasat 2 satellite4

to the larger Ka-band gateway antenna. The terminal supports adaptive coding
and modulation using 16-APK, 8 PSK, and QPSK (forward) at 10 to 52 MSym/s
and 8PSK, QPSK and BPSK (return) at 0.625 to 20 MSym/s.

The Viasat gateway performs per-client queue management, where the queue
can grow up to 36 MBytes, allowing a maximum queuing delay of about 2 seconds
at the peak data rate. Queue lengths are controlled at the gateway by Active
Queue Management (AQM) that randomly drops 25% of incoming packets when
the queue is over a half of the limit (i.e., 18 MBytes).

The performance enhancing proxy (PEP) that Viasat deploys by default is
disabled for all experiments in order to assess congestion control performance
independent of the PEP implementation, and to represent cases where a PEP
could not be used (e.g., for encrypted flows).

3.2 Baseline

For the network baseline, we run UDP Ping5 from a server to the client contin-
uously for 1 week. This sends one 20-byte UDP packet every 200 milliseconds
(5 packets/s) from the server to the client and back, recording the round-trip
time for each packet returned and the number of packets lost. Doing round-trip
time measurements via UDP avoids any special treatments routers may have for
ICMP packets.

3.3 Downloads

We compare the performance of four congestion control algorithms, chosen as
representatives of different congestion control approaches: loss-based Cubic, bandwidth-

4 https://en.wikipedia.org/wiki/ViaSat-2
5 http://perform.wpi.edu/downloads/#udp



TCP over a Satellite 5

delay product-based BBR (version 1), satellite-optimized loss-based Hybla and
utility function-based PCC. The four servers are configured to provide for bulk-
downloads via iperf36 (v3.3.1), each server hosting one of our four congestion
control algorithms. Cubic, BBR and Hybla are used without further configu-
ration. PCC is configured to use the Vivace-Latency utility function [12], with
throughput, loss, and round-trip time coefficients set to 1, 10, and 2, respectively.

For all hosts, the default TCP buffer settings are changed on both the server
and client – setting tcp mem, tcp wmem and tcp rmem to 60 MBytes – so that flows
are not flow-controlled and instead are governed by TCP’s congestion window.

The client initiates a connection to one server via iperf, downloading 1 GByte,
then immediately proceeding to the next server. After cycling through each
server, the client pauses for 1 minute. The process repeats a total of 80 times –
thus, providing 80 network traces of a 1 GByte download for each protocol over
the satellite link. Since each cycle takes about 15 minutes, the throughput tests
run for about a day total. We analyze results from a weekday in July 2020.

4 Analysis

4.1 Network Baseline

We start by analyzing the network baseline loss and round-trip times, obtained
on a “quiet” satellite link to our client – i.e., without any of our active bulk-
downloads. Table 3 provides summary statistics.

The vast majority (99%) of round-trip times are between 560 and 625 mil-
liseconds (median 597 ms, mean 597.5 ms, std dev 16.9 ms). However, the round-
trip times have a heavy-tailed tendency, with 0.1% from 625 ms to 1500 ms and
0.001% from 1700 to 2200 ms. These high values show multi-second round-trip
times can be observed on a satellite network even without any self-induced queu-
ing. There are no visual time of day patterns to the round-trip times.

In the same time period, only 604 packets are lost, or about 0.05%. Most of
these (77%) are single-packet losses, with 44 multi-packet loss events, the largest
11 packets (about 2.2 seconds). There is no apparent correlation between these
losses and the round-trip times (i.e., the losses do not seem to occur during the
highest round-trip times observed). Note, these loss rates are about 15x lower
than the reported WINDS satellite loss of 0.7% [17].

4.2 Representative Behavior

We begin by examining the TCP congestion control performance over time for
a single download representative of typical behavior for each algorithm for our
satellite connection. Figure 2 depicts the throughput, round-trip time and re-
transmission rate where each value is computed per second from Wireshark
traces on the server.

6 https://software.es.net/iperf/



6 S. Claypool et al.

(a) CUBIC (b) BBR

(c) Hybla (d) PCC

Fig. 2. Stacked graph comparison. From top to bottom, the graphs are: through-
put (Mb/s), round-trip time (milliseconds), and retransmission rate (percent). For all
graphs, the x-axis is time (in seconds) since the flow started.

TCP Cubic illustrates typical exponential growth in throughput during start-
up, but exits slow start relatively early, about 15 seconds in where throughput is
far lower than the link capacity. Thus, it takes Cubic about 30 seconds to reach
the expected steady state throughput of about 100 Mb/s. During steady state
(post 45 seconds) the AQM drops enough packets to keep Cubic from persistently
saturating the queue, resulting in round-trip times of about 1 second. However,
several spikes in transmission rates yield corresponding spikes in round-trip times
above 3 seconds and retransmission rates above 20 percent.

TCP BBR ramps up to higher throughput more quickly than Cubic, but this
also causes high round-trip times and loss rates around 20 seconds as BBR over-
saturates the bottleneck queue. At steady state, BBR operates at a fairly steady
140 Mb/s, with relatively low loss and round-trip times about 750 milliseconds
since the 2x bandwidth-delay product BBR keeps in flight is below the AQM
queue limit. However, there are noticeable dips in throughput every 10 seconds
when BBR enters its PROBE RTT state. In addition, there are intermittent



TCP over a Satellite 7

round-trip time spikes and retransmissions from loss which occur when BBR
enters PROBE BW and increases its transmission rate for 1 round-trip time.

TCP Hybla ramps up quickly, faster than does Cubic since it adjusts con-
gestion window growth based on latency, causing queuing at the bottleneck,
evidenced by the high early round-trip times. However, there are few retrans-
missions. At steady state Hybla achieves consistently high throughput, with a
slight growth in the round-trip time upon reaching about 140 Mb/s. Thereupon,
there is a slight upward trend to the round-trip time until the queue limit is
reached accompanied by some retransmissions.

TCP PCC ramps up somewhat slower than Hybla but faster than Cubic,
causing some queuing and some retransmissions, albeit fewer than BBR. At
steady state, throughput and round-trip times are consistent, near the mini-
mum round-trip time (around 600 milliseconds), and the expected maximum
throughput (about 140 Mb/s). The lower round-trip times are expected since
round-trip time is used by the PCC utility function.

4.3 Steady State

TCP’s overall performance includes both start-up and congestion avoidance
phases – the latter we call “steady state” in this paper. We analyze steady
state behavior based on the last half (in terms of bytes) of each trace.

Fig. 3. Steady state throughput distributions for 10%, 50%, 90% and mean.

For each algorithm, we compute steady state throughput in 1 second inter-
vals, extracting the 10th, 50th and 90th percentiles (and means) across all flows.
Figure 3 shows the boxplot distributions. The top left is the distribution for
the 10th percentiles, the top right the 50th (or median), the bottom left the
90th percentile and the bottom right the mean. Each box depicts quartiles and



8 S. Claypool et al.

median for the distribution. Points higher or lower than 1.4 × the inter-quartile
range are outliers, depicted by the circles. The whiskers span from the minimum
to maximum non-outlier. Table 1 shows the corresponding summary statistics.

Table 1. Steady state throughput
summary statistics.

Algorithm Mean (Mb/s) Std Dev

BBR 112.9 12.2
Cubic 123.3 17.0
Hybla 130.1 17.2
PCC 112.6 17.9

Table 2. Steady state throughput ef-
fect size (versus Cubic).

t(158) p Effect Size

BBR 4.44 <.0001 0.7
Hybla 2.51 0.0129 0.4
PCC 3.88 0.0002 0.6

From the graphs, at the 10th percentile BBR has lowest distribution of steady
state throughput. This is attributed to its reduced throughput during the round-
trip time probing phase, which, if there is no change to the minimum round-trip
time, triggers every 10 seconds and lasts for about 1 second. PCC’s throughput
at the 10th percentile is also a bit lower than Cubic’s or Hybla’s, possibly because
PCC’s reward for a low round-trip time can result in occasional under-utilization.

BBR, Cubic and Hybla all have similar median steady state throughputs,
while PCC’s is a bit lower.

BBR has the highest distribution of throughput at the 90th percentile, fol-
lowed by Cubic, Hybla and PCC. BBR’s estimation of the link bandwidth may
yield more intervals of high throughput than the other algorithms. Hybla’s 90th
percentile distribution is the most consistent (as seen by the small box), while
PCC’s is the least, maybe due to fuller queues and emptier queues, respectively
(see Table 4).

From the table, Hybla has the highest mean steady state throughput, followed
by CUBIC, and then BBR and PCC are about the same. BBR steady state
throughput varies the least, probably since the consistent link quality provides
for a steady delivery rate and round-trip time.

Since Cubic is the default TCP congestion control algorithm for Linux and
Windows servers, we compare the mean throughput for an alternate algorithm
choice – BBR, Hybla or PCC – to the mean for Cubic by independent, 2-tailed
t tests (α = 0.05) with a Bonferroni correction and compute the effect sizes.
An effect size provides a measure of the magnitude of difference – in our case,
the difference of the means for two algorithms. In short, effect size quantifies
how much the difference in congestion control algorithm matters. The Cohen’s
d effect size assesses the differences in means in relation to the pooled standard
deviation. Generally small effect sizes are anything under 0.2, medium is 0.2 to
0.5, large 0.5 to 0.8, and very large above 0.8. The t test and effect size results
are shown in Table 2. Statistical significance is highlighted in bold.

From the table, the mean steady state throughput differences compared to
Cubic are all statistically significant. BBR and PCC have lower steady state



TCP over a Satellite 9

throughputs than Cubic with large effect sizes. Hybla has a higher throughput
than Cubic with a moderate effect size.

Figure 4 shows the round-trip times during steady state. The x-axis is the
round-trip time in seconds computed from the TCP acknowledgments in the
Wireshark traces, and the y-axis is the cumulative distribution. There is one
trendline for each algorithm. Table 4 shows the summary statistics.

Table 3. Baseline round-trip
time summary statistics.

mean 597.5 ms
std dev 16.9 ms
median 597 ms
min 564 ms
max 2174 ms

Table 4. Steady state round-trip time
summary statistics.

Algorithm Mean (ms) Std Dev

BBR 780 125.1
Cubic 821 206.4
Hybla 958 142.1
PCC 685 73.1

During steady state, Hybla typically has round-trip times about 200 millisec-
onds higher than any other algorithm, likely because its aggressive congestion
window growth with high round-trip time yields more queuing delay. PCC has
the lowest and steadiest round-trip times, near the link minimum, likely because
its utility function rewards low round-trip times. BBR and Cubic are in-between,
with BBR being somewhat lower than Cubic and a bit steadier. Cubic, in par-
ticular, has a few cases with extremely high round-trip times. Across all flows,
about 5% of the round trip times are 2 seconds or higher.

Fig. 4. Steady state round-trip
time distributions.

Fig. 5. Steady state retransmis-
sion distributions.

Figure 5 shows the retransmissions during steady state. The axes and data
groups are as for Figure 4, but the y-axis is the percentage of retransmitted
packets computed over the second half of each flow.

From the figure, Cubic has the highest retransmission distribution and Hybla
the lowest. BBR and PCC are in-between, with BBR moderately higher but PCC



10 S. Claypool et al.

having a much heavier tail. Hybla and PCC are consistently low (0%) for about
75% of all runs, compared to only about 20% for BBR and Cubic.

While higher round-trip times generally mean larger router queues and more
drops and retransmissions, the Viasat AQM does not drop packets until the
queue is above about 1 second of delay. This means if a flow’s round-trip times
remain under about 1.6 seconds, it can avoid retransmissions.

4.4 Start-Up

We compare the start-up behavior for each algorithm by analyzing the first 30
seconds of each trace, approximately long enough to download 50 MBytes on our
satellite link. This is indicative of algorithm performance for some short-lived
flows and is about when we observed throughput growth over time “flattening”
for most flows.

The average Web page size for the top 1000 sites was around 2 MBytes as of
2018 [10], including HTML payloads and all linked resources (e.g., CSS files and
images). The Web page size distribution’s 95th percentile was about 6 MBytes
and the maximum was about 29 MBytes. Today’s average total Web page size
is probably about 5 MBytes [13], dominated by images and video.

Many TCP flows stream video content and these may be capped by the
video rate, which itself depends upon the video encoding. However, assuming
videos are downloaded completely, about 90% of YouTube videos are less than
30 MBytes [7].

Figure 6 depicts the time on the y-axis (in seconds) to download an object for
the given size on the x-axis (in MBytes). The object size increment is 1 MByte.
Each point is the average time required by a algorithm to download an object
of the indicated size, shown with a 95% confidence interval.

From the figure, for the smallest objects (1 MByte), Hybla and PCC down-
load the fastest, about 4 seconds, owning to the larger initial congestion windows
they both have (2.5x to 5x larger than either BBR or Cubic). In general, this
larger initial window means Hybla downloads small objects fastest followed by
PCC up to about 20 MBytes, then BBR and Cubic. After 20 MBytes, BBR
downloads objects faster than PCC, perhaps because BBR exits its starting
phase later than does PCC – BBR exits when the delivery rate has not in-
creased by 25% for 3 round-trip times and PCC exits when its utility function
decreases. For an average Web page download (5 MBytes), Hybla takes an aver-
age of about 4 seconds, PCC 7 seconds, BBR 10 seconds and Cubic 13 seconds.
For 90% of all videos and the largest Web pages (30 MBytes), Hybla takes about
8 seconds, BBR and PCC about twice that and Cubic about thrice.

Table 5 presents the summary statistics for the first 30 seconds of each flow for
each algorithm. During start-up, Cubic has a low round-trip time, mostly because
it takes a long time to ramp up throughput. BBR has the highest round-trip time
despite not having the highest throughput – that is had by Hybla, despite having
a lower round-trip time than BBR. The relatively higher average round-trip time
for BBR may be because it keeps up to a bandwidth-delay product of packets
in queue. PCC has average throughputs and round-trip times, but the steadiest



TCP over a Satellite 11

Fig. 6. Download time versus download object size.

round-trip times, possibly stabilized by the utility function rather than probing
for increased data rates (and causing variable amounts of queuing) as do the
other algorithms.

Table 5. Start-up summary statistics.

Tput (Mb/s) RTT (ms)
Algorithm Mean Std Dev Mean Std Dev

BBR 23.1 1.8 917 42.9
Cubic 16.6 0.3 757 22.3
Hybla 40.8 2.9 799 130.8
PCC 20.3 1.6 806 15.1

Table 6. Startup throughput
effect size (versus Cubic).

t(158) p Effect Size

BBR 31.9 <.0001 5
Hybla 74.2 <.0001 12
PCC 20.3 <.0001 3.2

Table 6 is like Table 2, but for start-up (the first 30 seconds). From the
table, the start-up throughput differences compared to Cubic are all statistically
significant. The effect sizes for comparing Cubic throughput to PCC, BBR and
Hybla throughputs are all very large.

4.5 Power

In addition to examining throughput and round-trip time separately, it has been
suggested that throughput and delay can be combined into a single “power”
metric by dividing throughput by delay [14] – the idea is that the utility of
higher throughput is offset by higher delay and vice-versa. Doing power analysis
using the mean throughput (in Mb/s) and delay (in seconds) for each algorithm
for start-up and steady state yields the numbers in Table 7 (units are MBits).
The algorithm with the most power in each phase is indicated in bold.

During steady state, PCC is the most powerful based on high throughput
with the lowest round-trip times. Cubic is more powerful than BBR or Hybla
since it has good throughput and round-trip times, whereas BBR is deficient in
throughput and Hybla in round-trip times.

At start-up, Hybla has the most power by far, primarily due to its high
throughput. BBR, Cubic and PCC are similar at about half the power of Hybla.



12 S. Claypool et al.

Table 7. TCP Power – throughput ÷ delay

Power (MBits)
Algorithm Steady Start-up

BBR 145 25
Cubic 150 22
Hybla 136 51

PCC 164 25

5 Conclusion

Satellite Internet connections are important for providing reliable connectivity,
but to date, there are few published research papers detailing TCP congestion
control performance over actual satellite networks.

This paper presents results from experiments on a commercial satellite net-
work, comparing four TCP congestion control algorithms – the two dominant
algorithms, Cubic and BBR, a commercial implementation of PCC, and the
satellite-tuned Hybla. These algorithms have different approaches to congestion
control: loss-based (Cubic), bandwidth estimation-based (BBR), utility function-
based (PCC), and satellite-optimized (Hybla). Results from 80 downloads for
each protocol, interlaced so as to minimize temporal differences, provide for
steady state and start-up performance. Baseline satellite network results are
obtained by long-term round-trip analysis in the absence of our other traffic.

Overall, the production satellite link has consistent baseline round-trip times
near the theoretical minimum (about 600 milliseconds) and very low (about
0.2%) loss rates. For TCP downloads, during steady state, the four algorithms
evaluated – Cubic, BBR, Hybla and PCC – have similar median throughputs, but
Hybla and Cubic have slightly higher mean throughputs owing to BBR’s bitrate
reduction when probing for minimal round-trip times (probing ∼10 seconds, each
lasting for ∼1.5 seconds). During start-up, Hybla’s higher throughputs allow it
to complete small downloads (e.g., Web pages) about twice as fast as BBR (∼5
seconds versus ∼10), while BBR is about 50% faster (∼10 seconds versus ∼15
seconds) than Cubic. Hybla is able to avoid some of the high retransmission rates
for Cubic and BBR, and to a lesser extent PCC, caused by saturating the bot-
tleneck queue. However, Hybla does have consistently higher round-trip times,
an artifact of continually having more packets in the bottleneck queue, while
PCC has the lowest. Combining throughput and round-trip into one “power”
metric shows PCC the most powerful at steady state, owing to high throughput
and steady, low round-trip times, and Hybla the most powerful during start-up
owing to fast throughput ramp-ups.

Future work includes evaluating settings for TCP, such as the initial con-
gestion window, and algorithm-specific settings such as RTT0 for Hybla. Since
BBR does not always share equitably with Cubic [9], future work is to run mul-
tiple flows over the satellite link. When BBR v2 is out of alpha/preview, we
plan to evaluate it, and QUIC [6], too. Other future work is to compare the al-
gorithms with a performance enhancing proxy (PEP), designed to mitigate the
high-latencies on the satellite link.



TCP over a Satellite 13

Acknowledgments Thanks to Amit Cohen, Lev Gloukhenki and Michael Scha-
pira of Compira Labs for providing the implementation of PCC. Also, thanks to
the anonymous reviewers and shepherd Srikanth Sundaresan for their thoughtful
feedback on improving our paper.

References

1. Arun, V., Balakrishnan, H.: Copa: Practical Delay-Based Congestion Control for
the Internet. In: Proceedings of the Applied Networking Research Workshop. Mon-
treal, QC, Canada (Jul 2018)

2. Association, S.I.: Introduction to the Satellite Industry. Online presentation:
https://tinyurl.com/y5m7z77e (2020)

3. Barakat, C., Chaher, N., Dabbous, W., Altman, E.: Improving TCP/IP over Geo-
stationary Satellite Links. In: Proceedings of GLOBECOM. Rio de Janeireo, Brazil,
(Dec 1999)

4. Caini, C., Firrincieli, R.: TCP Hybla: a TCP Enhancement for Heterogeneous Net-
works. International Journal of Satellite Communications and Networking 22(5),
547–566 (Sep 2004)

5. Cao, Y., Jain, A., Sharma, K., Balasubramanian, A., Gandhi, A.: When to Use
and When not to Use BBR: An Empirical Analysis and Evaluation Study. In:
Proceedings of the Internet Measurement Conference (IMC). Amsterdam, NL (Oct
2019)

6. Cardwell, N., Cheng, Y., Yeganeh, S.H., Jacobson, V.: BBR Congestion Control.
IETF Draft draft-cardwell-iccrg-bbr-congestion-control-00 (Jul 2017)

7. Che, X., Ip, B., Lin, L.: A Survey of Current YouTube Video Characteristics. IEEE
Multimedia 22(2) (April - June 2015)

8. Cisco: Interface and Hardware Component Configuration Guide, Cisco IOS Release
15M&T. Cisco Systems, Inc. (2015), chapter: Rate Based Satellite Control Protocol

9. Claypool, S., Claypool, M., Chung, J., Li, F.: Sharing but not Caring - Performance
of TCP BBR and TCP CUBIC at the Network Bottleneck. In: Proceedings of the
15th IARIA Advanced International Conference on Telecommunications (AICT).
Nice, France (Aug 2019)

10. Data and Analysis: Webpages Are Getting Larger Every Year, and Here’s Why
it Matters. Solar Winds Pingdom. Online at: https://tinyurl.com/y4pjrvhl

(November 15 2018)

11. Dong, M., Li, Q., Zarchy, D., Godfrey, P.B., Schapira, M.: PCC: Re-architecting
Congestion Control for Consistent High Performance. In: Proceedings of the 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
Oakland, CA, USA (2015)

12. Dong, M., Meng, T., Zarchy, D., Arslan, E., Gilad, Y., Godfrey, B., Schapira,
M.: PCC Vivace: Online-Learning Congestion Control. In: Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
Renton, WA, USA (Apr 2018)

13. Everts, T.: The Average Web Page is 3 MB. How Much Should
We Care? Speed Matters Blog. Online at: https://speedcurve.com/blog/

web-performance-page-bloat/ (August 9th 2017)

14. Floyd, S.: Metrics for the Evaluation of Congestion Control Mechanisms. RFC 5166
(March 2008)



14 S. Claypool et al.

15. Ha, S., Rhee, I., Xu, L.: CUBIC: A New TCP-Friendly High-Speed TCP Variant.
ACM SIGOPS Operating Systems Review 42(5) (2008)

16. N. Cardwell and Y. Cheng and C. S. Gunn and S. H. Yeganeh and Van Jacobson:
BBR: Congestion-based Congestion Control. Communications of the ACM 60(2),
58–66 (Jan 2017)

17. Obata, H., Tamehiro, K., Ishida, K.: Experimental Evaluation of TCP-STAR for
Satellite Internet over WINDS. In: Proceedings of the International Symposium
on Autonomous Decentralized Systems. Tokyo, Japan (Mar 2011)

18. Utsumi, S., Muhammad, S., Zabir, S., Usuki, Y., Takeda, S., Shiratori, N., Katod,
Y., Kimb, J.: A New Analytical Model of TCP Hybla for Satellite IP Networks.
Journal of Network and Computer Applications 124 (Dec 2018)

19. Wang, Y., Zhao, K., Li, W., Fraire, J., Sun, Z., Fang, Y.: Performance Evaluation of
QUIC with BBR in Satellite Internet. In: Proceedings of the 6th IEEE International
Conference on Wireless for Space and Extreme Environments (WiSEE). Huntsville,
AL, USA (Dec 2018)


