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Abstract. Satellite connections are critical for continuous network con-
nectivity when disasters strike and for remote hosts that cannot use
traditional wired, WiFi or mobile networking. While satellite Internet
bitrates have increased, latency can still degrade TCP performance. Re-
alistic assessment of TCP over satellites is lacking, typically done by
simulation or emulation only, if at all. This paper presents experiments
comparing four TCP congestion control algorithms — BBR, Cubic, Hy-
bla and PCC — on a commercial satellite network. Analysis shows similar
steady-state bitrates for all, but with significant differences in start-up
throughputs and round-trip times caused by queuing of packets in flight.
Power analysis combining throughput and latency shows that overall,
PCC is the most powerful, due to relatively high throughputs and con-
sistent, relatively low round-trip times, while for small downloads Hybla
is the most powerful, due to fast throughput ramp-ups. BBR generally
fares similarly to Cubic in both cases.

1 Introduction

Satellites are an essential part of modern networking, providing ubiquitous con-
nectivity even in times of disaster. The are 2100+ satellites in orbit, a 67%
increase from 2014 to 2019 [2]. Improvements in satellite technology have pro-
duced spot beam frequency reuse to increase transmission capacities more than
20x with the total capacity of planned Geosynchronous orbit satellites over 5
Th/s.

Geosynchronous orbit satellites have about 300 milliseconds of latency to
bounce a signal up and down [9], a hurdle for TCP protocols that use round-
trip time communication to advance their data windows. TCP congestion control
algorithms play a critical role determining throughput in the presence of network
latency and loss. TCP Cubic [16] is the default TCP congestion control algorithm
in Linux and Microsoft Windows, but BBR, [17] has been widely deployed for
TCP by Google on Linux servers and is a congestion control option available
in the QUIC transport protocol, as well [7]. A better understanding of TCP
congestion control algorithm performance over satellite networks is needed in
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order to assess challenges and opportunities that satellites have to better support
TCP moving forward.

However, there are few published studies measuring network performance
over actual satellite networks [18], with most studies either using just simula-
tions [3] or emulations with satellite parameters [1,12,21, 22].

This paper presents results from experiments that measure the performance
of TCP over a commercial Internet satellite network. We compare four TCP con-
gestion control algorithms, chosen based on their representative approaches to
congestion control: default loss-based Cubic [16], bandwidth-delay product-based
BBR [17], utility function-based PCC [12], and satellite-optimized Hybla [5]. Our
network testbed and experiments are done on the Internet, but are designed to
be as comparable by interlacing runs of each protocol serially to minimize tem-
poral differences and by doing 80 bulk downloads for each protocol to provide
for a large sample. In addition, a custom ping application provides several days
worth of round-trip time and lost packet data for a baseline satellite network
with no other traffic.

Analysis of the results shows the satellite link has consistent baseline round-
trip times of about 600 milliseconds, but infrequently has round-trip times of
several seconds. Loss events are similarly infrequent (less than 0.05%) and short-
lived. For TCP congestion control, BBR, Cubic and Hybla have slight higher
median and 90th percentile steady-state throughput than PCC. However, during
the start-up phase, Hybla has the highest throughput followed by PCC, BBR
and Cubic, in that order — faster start-up means faster completion for short-lived
downloads, such as Web pages. At steady-state, PCC has the lowest round-trip
time, and Hybla the highest, consistently 50% higher than PCC. BBR and Cubic
round-trip times are similar and between those of PCC and Hybla. However,
BBR, Cubic and PCC (to a lesser extent), have periods of high retransmission
rates owing to their over-saturation of the bottleneck queue, while Hybla mostly
avoids this. Power analysis that combines throughput and delay shows PCC is
generally the most powerful, followed by Hybla with Cubic and BBR equally the
least powerful.

The rest of this report is organized as follows: Section 2 presents related work,
Section 3 describes our methodology, Section 4 analyzes the data, and Section 5
summarizes our conclusions and future work.

2 Related Work

This section describes work related to our paper, including TCP congestion
control (Section 2.1), comparisons of TCP congestion control algorithms (Sec-
tion 2.2), and TCP performance over satellite networks (Section 2.3).

2.1 TCP Congestion Control (CC)

There have been numerous proposals for improvements to TCP’s congestion
control algorithm since it’s inception. This section highlights a few of the papers
most relevant to our work, presented in chronological order.
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Caini and Firrinielli [5] propose TCP Hybla to overcome the limitations TCP
NewReno flows have when running over high-latency links (e.g., a Satellite).
TCP Hybla modifies the standard congestion window increase with an extension
based on the round-trip time. In Hybla slow-start, cund = cwnd 4+ 27 — 1 and

in congestion avoidance cwnd = cwnd + #id, where p = RTT/RTTy. RTT, is
fixed at a “wired” round-trip time of 0.025 seconds. Hybla is available for Linux
as of kernel 2.6.11 (in 2005).

Ha et al. [16] develop TCP Cubic as in incremental improvement to earlier
congestion control algorithms. Cubic is less aggressive than previous TCP con-
gestion control algorithms in most steady-state cases, but can probe for more
bandwidth quickly when needed. TCP Cubic has been the default in Linux as
of kernel 2.6.19 (in 2007), Windows 10.1709 Fall Creators Update (in 2017), and
Windows Server 2016 1709 update (in 2017).

Cardwell et al. [17] provide TCP Bottleneck Bandwidth and Round-trip time
(BBR) as an alternative to Cubic’s (and Hybla’s) loss-based congestion control.
BBR uses the maximum bandwidth and minimum round-trip time observed to
set the congestion window size (up to twice the bandwidth-delay product). BBR,
has been deployed by Google servers since at least 2017 and is available for Linux
as of kernel 4.9 (end of 2016).

Dong et al. [12] propose TCP PCC that observes performance based on small
measurement “experiments”. During these experiments, throughput, loss, and
round-trip times are assessed with a utility function, adopting the rate that has
the best utility. PCC is not generally available for Linux, but Compira Labs?
provided us a Linux-based implementation.

2.2 Comparison of CC Algorithms

Cao et al. [6] analyze measurement results of BBR and Cubic over a range of
different network conditions. They produce heat maps and a decision tree that
identifies conditions which show performance benefits from BBR over using Cu-
bic. They find it is the relative difference between the bottleneck buffer size and
bandwidth-delay product that dictates when BBR performs well. Our work ex-
tends this work by providing detailed evaluation of Cubic and BBR in a satellite
configuration, with round-trip times significantly beyond those tested by Cao et
al.

Ware et al. [23] model how BBR interacts with loss-based congestion control
protocols (e.g., TCP Cubic). Their validated model shows BBR becomes window-
limited by its in-flight cap which then determines BBR’s bandwidth consump-
tion. Their models allow for prediction of BBR’s throughput when competing
with Cubic with less than a 10% error.

Turkovic et al. [20] study the interactions between congestion control algo-
rithms. They measure performance in a network testbed using a “representative”
algorithm from three main groups of TCP congestion control — loss-based (TCP
Cubic), delay based (TCP Vegas [4]) and hybrid (TCP BBR) — using 2 flows

3 https://www.compiralabs.com/
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with combinations of protocols competing with each other. They also do some
evaluation of QUIC [19] as an alternative transport protocol to TCP. They ob-
served bandwidth fairness issues, except for Vegas and BBR, and found BBR is
sensitive to even small changes in round-trip time.

2.3 TCP over Satellite Networks

Obata et al. [18] evaluate TCP performance over actual (not emulated, as is typ-
ical) satellite networks. Specifically, they compare a satellite-oriented TCP con-
gestion control algorithm (STAR) with TCP NewReno and TCP Hybla. Experi-
ments with the Wideband InterNetworking Engineering test and Demonstration
Satellite (WINDS) system show throughputs around 26 Mb/s and round-trip
times around 860 milliseconds. Both TCP STAR and TCP Hybla have better
throughputs over the satellite links than TCP NewReno, but while we evaluate
TCP Hybla, there is no public Linux implementation of TCP STAR available.

Wang et al. [22] provide preliminary performance evaluation of QUIC with
BBR on an emulated a satellite network (capacities 1 Mb/s and 10 Mb/s, RTTs
200, 400 and 1000 ms, and packet loss rates up to 20%). Their results confirm
QUIC with BBR has throughput improvements compared with TCP Cubic for
their emulated satellite network.

Utsumi et al. [21] develop an analytic model for TCP Hybla for steady state
throughput and round-trip time over satellite links. They verify the accuracy
of their model with simulated and emulated satellite links (capacity 8 Mb/s,
RTT 550 ms, and packet loss rates up to 2%). Their analysis shows substantial
improvements to throughput over that of TCP Reno for loss rates above 0.0001%

Our work extends the above with comparative performance for four TCP
congestion control algorithms on an actual, commercial satellite Internet net-
work.

3 Methodology

In order to evaluate TCP congestion control over satellite links, we: setup a
testbed (Section 3.1), measure network baseline loss and round-trip times (Sec-
tion 3.2), bulk-download data using each congestion control algorithm serially
(Section 3.3), and analyze the results (Section 4).

3.1 Testbed

We setup a Viasat* satellite Internet link so as to represent a client with a “last
mile” satellite connection. Our servers are configured to allow for repeated tests
and comparative performance by serial runs with all conditions the same, except
for the change in TCP congestion control algorithm.

Our testbed is depicted in Figure 1. The client is a Linux PC with an Intel
i7-1065G7 CPU @ 1.30GHz and 32 GB RAM. There are four servers, each with

4 https://www.viasat.com/internet
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Fig. 1. Satellite measurement testbed.

a different TCP congestion control algorithm: Cubic, BBR, Hybla and PCC.
Each server has an Intel Ken E312xx CPUs @ 2.5 GHz and 32 GB RAM. The
servers and client all run Ubuntu 18.04.4 LTS, Linux kernel version 4.15.0. The
servers connect to our University LAN via Gb/s Ethernet. The campus network
is connected to the Internet via several 10 Gb/s links, all throttled to 1 Gb/s.
Wireshark captures all packet header data on each server and the client.

The client connects to a Viasat satellite terminal (with a modem and router)
via a Gb/s Ethernet connection. The client’s downstream Viasat service plan
provides a peak data rate of 144 Mb/s.

The terminal communicates through a Ka-band outdoor antenna (RF ampli-
fier, up/down converter, reflector and feed) through the Viasat 2 satellite® to the
larger Ka-band gateway antenna. The satellite is capable of aggregate through-
put of up to 260 Gb/s. The terminal supports adaptive coding and modulation
using 16-APK, 8 PSK, and QPSK (forward) at 10 to 52 MSym/s and 8PSK,
QPSK and BPSK (return) at 0.625 to 20 MSym/s.

The Viasat gateway performs per-client queue management, where the queue
can grow up to 36 MBytes, allowing a maximum queuing delay of about 2 seconds
at the peak data rate. Queue lengths are controlled by Active Queue Manage-
ment (AQM) that randomly drops incoming packets when the queue is over a
half of the limit (i.e., 18 MBytes).

The performance enhancing proxy (PEP) that Viasat deploys by default is
disabled for all experiments in order to assess congestion control performance
independent of the specific PEP implementation, and to represent cases where
the PEP could not be used (e.g., for encrypted flows).

3.2 Baseline

For the network baseline, we run UDP Ping®, from a server to the client contin-
uously for 1 week. This sends one 20-byte UDP packet every 200 milliseconds
(5 packets/s) from the server to the client and back, recording the round-trip
time for each packet returned and the number of packets lost. Doing round-trip

® https://en.wikipedia.org/wiki/ViaSat-2
S http://perform.wpi.edu/downloads/#udp
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time measurements via UDP avoids any potential special treatments routers may
have for traditional ICMP packets.

3.3 Downloads

We compare the performance of four congestion control algorithms, chosen as
representatives of different congestion control approaches: loss-based Cubic, bandwidth-
delay product-based BBR (version 1), satellite-optimized loss-based Hybla and
utility function-based PCC. The four servers are configured to provide for bulk-
downloads via iperf3” (v3.3.1), each server hosting one of our four congestion
control algorithms.

Cubic, BBR and Hybla are used without further configuration. PCC is con-
figured to use the Vivace-Latency utility function [13], with throughput, loss,
and round-trip time coefficients set to 1, 10, and 2, respectively.

For all hosts, the default TCP buffer settings are changed on both the server
and client so that flows are not flow-controlled and instead are governed by TCP’s
congestion window. These include setting tcp.mem, tcp_wmem and tcp_rmem to
60 MBytes.

The client initiates a connection to one server via iperf, downloading 1 GByte,
then immediately proceeding to the next server. After cycling through each
server, the client pauses for 1 minute. The process repeats a total of 80 times —
thus, providing 80 network traces of a 1 GByte download for each protocol over
the satellite link. Since each cycle takes about 15 minutes, the throughput tests
run for about a day total. We analyze results from a weekday in July 2020.

4 Analysis

This section presents network baseline metrics, followed by TCP steady state
and start-up performance considering throughput, delay (round-trip time) and
loss (retransmissions) [15].

4.1 Network Baseline

We start by analyzing the network baseline loss and round-trip times, obtained
on a “quiet” satellite link to our client — i.e., without any of our active bulk-
downloads. Table 3 provides summary statistics.

The vast majority (99%) of the round-trip times are between 560 and 625
milliseconds (median 597 ms, mean 597.5 ms, std dev 16.9 ms). However, the
round-trip times have a heavy-tailed tendency, with 0.1% from 625 ms to 1500
ms and 0.001% from 1700 to 2200 ms. These high values show multi-second
round-trip times can be observed on a satellite network even without any self-
induced queuing. There are no visual time of day patterns to the round-trip
times.

" https://software.es.net /iperf/



In the same time period, only 604 packets are lost, or about 0.05%. Most of
these (77%) are single-packet losses, with 44 multi-packet loss events, the largest
11 packets (about 2.2 seconds). There is no apparent correlation between these
losses and the round-trip times (i.e., the losses do not seem to occur during the
highest round-trip times observed). Note, these loss rates are about 15x lower
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than the reported WINDS satellite loss of 0.7% [18].

4.2 Representative Behavior

We begin by examining the TCP congestion control performance over time for
a single download representative of typical behavior for each protocol for our
satellite connection. Figure 2 depicts the throughput, round-trip time and re-
transmission rate where each value is computed per second from Wireshark

traces on the server.

RTT (m:
SN
o o
o o
o © o

=
N U N O
oo a o

Retrans. Rate

=

—~ 240

RTT (m:
SN
o o
o o
o © o

=
N U N O
oo a o

Retrans. Rate

=
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TCP Cubic illustrates typical exponential growth in throughput during start-
up, but exits slow start relatively early, about 15 seconds in where throughput is
far lower than the link capacity. Thus, it takes Cubic about 30 seconds to reach
the expected steady state throughput of about 100 Mb/s. During steady state
(post 45 seconds) the AQM drops enough packets to keep Cubic from persistently
saturating the queue, resulting in round-trip times of about 1 second. However,
several spikes in transmission rates yield corresponding spikes in round-trip time
above 3 seconds and retransmission rates above 20 percent.

TCP BBR ramps up to higher throughput more quickly than Cubic, but this
also causes high round-trip times and loss rates around 20 seconds in as BBR
over-saturates the bottleneck queue. At steady state, BBR operates at a fairly
steady 140 Mb/s, with relatively low loss and RTTs about 750 milliseconds since
the 2x bandwidth-delay product BBR keeps in flight is below the AQM queue
limit. However, there are noticeable dips in throughput every 10 seconds when
BBR enters its PROBE_RTT state. In addition, there are intermittent round-trip
time spikes and accompanying loss which occur when BBR enters PROBE_BW
and increases its transmission rate for 1 round-trip time.

TCP Hybla ramps up quickly, faster than does Cubic since it adjusts con-
gestion window growth based on latency, causing queuing at the bottleneck,
evidenced by the high early round-trip times. However, there are few retrans-
missions. At steady state Hybla achieves consistently high throughput, with a
slight growth in the round-trip time upon reaching about 140 Mb/s. Thereupon,
there is a slight upward trend to the round-trip time until the queue limit is
reached accompanied by some retransmissions.

TCP PCC ramps up somewhat slower than Hybla but faster than Cubic,
causing some queuing and some retransmissions, albeit fewer than BBR. At
steady state, throughput and round-trip times are consistent, near the mini-
mum round-trip time (around 600 milliseconds), and the expected maximum
throughput (about 140 Mb/s). The lower round-trip times are expected since
round-trip time is used by the PCC utility function.

4.3 Steady State

TCP’s overall performance includes both start-up and congestion avoidance
phases — the latter we call “steady state” in this paper. We analyze steady
state behavior based on the last half (in terms of bytes) of each trace.

For each protocol, we compute steady state throughput in 1 second intervals,
extracting the 10th, 50th and 90th percentiles (and means) across all flows.
Figure 3 shows the boxplot distributions. The top left is the distribution for the
10th percentiles, the top right the 50th (or median), the bottom left the 90th
percentile and the bottom right the mean. Each box depicts quartiles and median
for the distribution. Points higher or lower than 1.4 x the inter-quartile range
are outliers, depicted by the circles. The whiskers span from the minimum non-
outlier to the maximum non-outlier. Table 1 shows the corresponding summary
statistics.
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Table 1. Steady state throughput

Lo Table 2. Steady state throughput ef-
summary statistics.

fect size (versus Cubic).

Protocol  Mean (Mb/s)  Std Dev

t(158) p  Effect Size

BBR 112.9 12.2 BBR 4.44 <.0001 0.7
Cubic 123.3 17.0

Hybla  2.51 0.0129 0.4
Hybla 130.1 17.2 PCC 3.88 0.0002 0.6
PCC 112.6 17.9 : . :

From the graphs, at the 10th percentile BBR has lowest distribution of
steady state throughput. This is attributed to the minimal throughput during
the round-trip time probing phase, which, if there is no change to the minimum
round-trip time, triggers every 10 seconds and lasts for about 1 second. PCC’s
throughput at the 10th percentile is also a bit lower than Cubic’s or Hybla’s,
possibly because PCC’s reward for a low round-trip time can result in occasional
under-utilization.

BBR, Cubic and Hybla all have a similar median steady state throughputs,
while PCC’s is a bit lower.

BBR has the highest distribution of throughput at the 90th percentile, fol-
lowed by Cubic, Hybla and PCC. BBR’s estimation of the link bandwidth may
yield more intervals of high throughput than the other protocols. Hybla’s 90th
percentile distribution is the most consistent (as seen by the small box), while
PCC’s is the least, maybe due to fuller queues and emptier queues, respectively
(see Table 4).

From the table, Hybla has the highest mean steady state throughput, followed
by CUBIC, and then BBR and PCC are about the same. BBR steady state
throughput varies the least, probably since the consistent link quality provides
for a steady delivery rate and round-trip time.
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Since Cubic is the default TCP congestion control protocol for Linux and
Windows servers, we compare the mean throughput for an alternate protocol
choice — BBR, Hybla or PCC — to the mean for Cubic by independent, 2-tailed
t tests (« = 0.05) with a Bonferroni correction and compute the effect sizes.
An effect size provides a quantitative measure of the magnitude of difference —
in our case, the difference of the means for two protocols. In short, effect size
quantifies how much the difference in congestion control protocols matters. The
Cohen’s d effect size quantifies the differences in means in relation to the pooled
standard deviation. Generally small effect sizes are anything under 0.2, medium
is 0.2 to 0.5, large 0.5 to 0.8, and very large is above 0.8. The t test and effect
size results are shown in Table 2. Statistical significance is highlighted in bold.

From the table, the mean steady state throughputs are all statistically signif-
icantly different than Cubic. BBR and PCC have lower steady state throughputs
than Cubic with a large effect size. Hybla has a higher throughput than Cubic
with a moderate effect size.

Figure 4 shows the round-trip times during steady state. The x-axis is the
round-trip time in seconds computed from the TCP acknowledgments in the
Wireshark traces, and the y-axis is the cumulative distribution. There is one
trendline for each protocol. Table 4 shows the summary statistics.

Table 3. Baseline round-trip time Table 4. Steady state round-trip time sum-

summary statistics. mary statistics.
mean 597.5 ms Protocol Mean (ms) Std Dev
std dev 16.9 ms BBR 780  125.1
median 597 ms Cubic 821  206.4
min 564 ms Hybla 958  142.1

max 2174 ms PCC 685 73.1

During steady state, Hybla typically has round-trip times about 200 mil-
liseconds higher than any other protocol, likely because its aggressive congestion
window growth with high round-trip time yields more queueing delay. PCC has
the lowest and steadiest round-trip times, near the link minimum, likely because
its utility function rewards low round-trip times. BBR and Cubic are in-between,
with BBR being somewhat lower than Cubic and a bit steadier. Cubic, in par-
ticular, has a few cases with extremely high round-trip times. Across all flows,
about 5% of the round trip times are 2 seconds or higher.

Figure 5 shows the retransmissions during steady state. The axes and data
groups are as for Figure 4, but the y-axis is the percentage of retransmitted
packets computed over the second half of each flow.

From the figure, Cubic has the highest retransmission distribution and Hybla
the lowest. BBR and PCC are in-between, with BBR moderately higher but PCC
having a much heavier tail. Hybla and PCC are consistently low (0%) for about
75% of all runs, compared to only about 20% for BBR and Cubic.
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While higher round-trip times generally mean larger router queues and more
drops and retransmissions, the Viasat AQM does not drop packets until the
queue is above about 1 second of delay. This means if a flow’s round-trip times
remain under about 1.6 seconds, it can avoid retransmissions.

4.4 Start-Up

We compare the start-up behavior for each protocol by analyzing the first 30
seconds of each trace, approximately long enough to download 50 MBytes on
our satellite link. This is indicative of protocol performance for some short-lived
flows and is about when we observed throughput growth over time “flattening”
for most flows.

The average Web page size for the top 1000 sites worldwide was around
2 MBytes as of 2018 [11], including HTML payloads, and all linked resources
(e.g., CSS files and images). The Web page size distribution’s 95th percentile
was about 6 MBytes and the maximum was about 29 MBytes. Today’s average
total Web page size is probably about 5 MBytes [14], dominated by images and
video.

Many TCP flows stream video content and these may be capped by the
video rate, which itself depends upon the video encoding. However, assuming
videos are downloaded completely, about 90% of YouTube videos are less than
30 MBytes [8].

Figure 6 depicts the time on the y-axis (in seconds) that would have been
required to download an object for the given size on the x-axis (in MBytes).
The object size increment is 1 MByte. Each point is the average time required
by a protocol to download an object of the indicated size, shown with a 95%
confidence interval.

From the figure, for the smallest objects (1 MByte), Hybla and PCC down-
load the fastest, about 4 seconds, owning to the larger initial congestion windows
they both have (2.5x to 5x larger than either BBR, or Cubic). In general, this
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larger initial window means Hybla downloads small objects fastest followed by
PCC up to about 20 MBytes, then BBR and Cubic. After 20 MBytes, BBR
downloads objects faster than PCC, likely because BBR has reached its esti-
mate maximum bottleneck bandwidth. For an average Web page download (5
MBytes), Hybla takes an average of 4 seconds, PCC 7 seconds, BBR 10 seconds
and Cubic 13 seconds. For 90% of all videos and the largest Web pages (30
MBytes), Hybla takes about 8 seconds, BBR and PCC about twice that and
Cubic about thrice.

25

—4— Hybla
—4— PCC

0 10 20 30 40 50
Download Size (MBytes)

Fig. 6. Download time versus download object size.

Table 5 presents the summary statistics for the first 30 seconds of each flow for
each protocol. During start-up, Cubic has a low round-trip time, mostly because
it takes a long time to ramp up throughput. BBR has the highest round-trip
time despite not having the highest throughput — that is had by Hybla, despite
having a lower round-trip time than BBR. The relatively higher average round-
trip time for BBR may be because it keeps up to a bandwidth-delay product of
packets in queue. PCC has average throughputs and round-trip times, but the
steadiest round-trip times, possibly stabilized by the utility function rather than
probing for increased data rates (and causing variable amounts of queuing) as
do the other protocols.

Table 5. Start-up summary statistics. Table 6. Startup throughput

effect size (versus Cubic).

Tput (Mb/s) RTT (ms)
Protocol Mean Std Dev Mean Std Dev -
BBR 23.1 18 917 42.9 t(158)  p _Effect Size
Cubic 166 03 757 223  BBR - 319<.0001 5
Hybla 40.8 2.9 799 130.8 Hybla  74.2<.0001 12
: ' ' PCC 20.3 <.0001 3.2

PCC 20.3 1.6 806 15.1
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Table 6 is like Table 2, but for start-up (the first 30 seconds). From the
table, the start-up throughputs are all statistically significantly different than
Cubic. The effect sizes for comparing Cubic throughput to PCC, BBR and Hybla
throughputs are all very large.

4.5 Power

In addition to examining throughput and round-trip time separately, it has been
suggested that throughput and delay can be combined into a single “power”
metric by dividing throughput by delay [15] — the idea is that the utility of
higher throughput is offset by higher delay and vice-versa. Doing power analysis
using the mean throughput (in Mb/s) and delay (in seconds) for each protocol
for start-up and steady state yields the numbers in Table 7 (units are MBits).
The protocol with the most power in each phase is indicated in bold.

Table 7. TCP Power — throughput + delay

Power (MBits)
Protocol Steady Start-up

BBR 145 25
Cubic 150 22
Hybla 136 51
PCC 164 25

During steady state, PCC is the most powerful based on high throughput
with the lowest round-trip times. Cubic is more powerful than BBR or Hybla
since it has good throughput and round-trip times, whereas BBR is deficient in
throughput and Hybla in round-trip times.

At start-up, Hybla has the most power by far, primarily due to its high
throughput. BBR, Cubic and PCC are similar at about half the power of Hybla.

5 Conclusion

Satellite Internet connections are important for providing reliable connectivity,
but to date, there are few published research papers detailing TCP congestion
control performance over actual satellite networks.

This paper presents results from experiments on a production satellite net-
work, comparing four TCP congestion control algorithms — the two dominant
algorithms, Cubic and BBR, a commercial implementation of PCC, and the
satellite-tuned Hybla. These algorithms have different approaches to congestion
control: loss-based (Cubic), bandwidth estimation-based (BBR), utility function-
based (PCC), and satellite-optimized (Hybla). Results from 80 downloads for
each protocol, interlaced so as to minimize temporal differences, provide for
steady state and start-up performance. Baseline satellite network results are
obtained by long-term round-trip analysis in the absence of our other traffic.
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Overall, the production satellite link has consistent baseline round-trip times
near the theoretical minimum (about 600 milliseconds) and very low (about a
twentieth of a percent) loss rates. For TCP downloads, during steady state, the
four protocols evaluated — Cubic, BBR, Hybla and PCC — all have similar median
throughputs, but Hybla and Cubic have slightly higher mean throughputs owing
to BBR’s bitrate reduction when probing for minimal round-trip times (probing
happens every 10 seconds and lasts for about 1.5 seconds). During start-up,
Hybla’s higher throughputs allow it to complete small downloads (e.g., Web
pages) about twice as fast as BBR (~5 seconds versus ~10), while BBR is about
50% faster (10 seconds versus 15 seconds) than Cubic. Hybla is able to avoid
some of the high retransmission rates brought on by Cubic and BBR, and to
a lesser extent PCC, saturating the bottleneck queue, too. However, as a cost,
Hybla has consistently higher round-trip times, an artifact of more packets in
the bottleneck queue, while PCC has the lowest. Combining throughput and
round-trip into one “power” metric shows PCC the most powerful, owing to
high throughputs and steady, low round-trip times.

There are several areas we are keen to pursue as future work. Settings to TCP,
such as the initial congestion window, may have a significant impact on perfor-
mance, especially for small object downloads, as may protocol-specific settings
such as RTTy for TCP Hybla. Since prior work has shown TCP BBR does not
always share a bottleneck network connection equitably with TCP Cubic [10],
future work is to run multiple flow combinations over the satellite link, includ-
ing QUIC [7]. When TCP BBR v2 is out of alpha/preview, we plan to evaluate
it, as well. Other future work is to compare the protocols with and without a
performance enhancing proxy (PEP), designed to mitigate the high-latencies on
the satellite link.
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