
TCP HyStart Performance over a Satellite Network

Benjamin Peters*, Pinhan Zhao*, Jae Chung†, Mark Claypool*

*Worcester Polytechnic Institute
Worcester, MA, USA

{btpeters, pzhao2, claypool}@wpi.edu
†Viasat

Marlboro, MA, USA
jaewon.chung@viasat.com

Abstract

TCP slow start is designed to begin at a conservative bitrate,
but quickly ramp up to the available bandwidth. To avoid over-
shooting, TCP slow start has a HyStart mode (on by default in
Linux) that may exit slow start before packets are lost. Unfor-
tunately, HyStart may also exit slow start prematurely, making
it take longer for TCP to reach intended bitrates. This is espe-
cially problematic for links with high bandwidth and high la-
tency, such as an satellite Internet connection. This paper eval-
uates TCP HyStart performance over a commercial satellite
Internet link, first evaluating how sender and receiver buffer
size settings might limit throughput and subsequently assess-
ing TCP with HyStart on versus TCP with HyStart off for both
isolated and simultaneous flows. Analysis shows HyStart on
(the default) significantly degrades TCP start-up performance,
with average throughputs about half that of HyStart off during
starting performance.

Keywords

TCP, slow start, start-up, HyStart, congestion control, round-
trip time, packet loss, satellite Internet, buffer sizes, rmem,
wmem, cwnd

Introduction

During slow start, TCP increases its congestion window by
one for each acknowledgment received, effectively doubling
its congestion window when there are no packet losses. Since
packet losses are harmful to TCP flows during start-up, HyS-
tart seeks to avoid losses by exiting slow start before it might
overshoot the desired window threshold [10]. Unfortunately,
exiting early can sometimes degrade performance if it exits
before the available bitrate is reached since it will then take
longer for the congestion window to reach the desired size.
This can be particularly damaging for high-bandwidth, high-
latency links since it takes a long time to reach the large con-
gestion window required. In other words, slow start has a
double-edged sword: without HyStart, the potential for low
throughput caused by loss from a slow start overshoot, but
with HyStart the potential for low throughput caused by pre-
maturely exiting slow start.

Despite this, the original HyStart has been enabled by de-
fault for all TCP connections in Linux since about 2010. This
means it is enabled by default for all high-bandwidth, high-
latency Internet links even if it is not clear whether it helps

or hurts the connection. Of particular interest are satellite
Internet networks, an essential part of modern network in-
frastructures given their ubiquitous network connectivity for
remote areas and especially in emergencies when traditional
(i.e., wired) connections may not be available. The number
of satellites in orbit is over 2100, a 67% increase from 2014
to 2019 [17], and recent research has improved satellite trans-
mission capacities more than 20x, to a total planned capacity
for geostationary satellites of over 5 Tb/s. While through-
put gains for satellite Internet are promising, satellite laten-
cies remain a challenge. The physics involved for round-trip
time Internet communication between terrestrial hosts using
a geostationary satellite accounts for about 550 milliseconds
of latency at a minimum [5].

Despite their importance, there are few published stud-
ies measuring network performance over actual satellite net-
works [16], with most studies just using either simulation [2]
or emulation with satellite parameters [18, 8]. To the best of
our knowledge, there is no prior work assessing the perfor-
mance of TCP HyStart over actual satellite networks.

This paper presents results from experiments that measure
the performance of HyStart in a commercial satellite Inter-
net network. We first assess the role in sender and receiver
buffer sizes, including Linux buffer auto-tuning, then perfor-
mance with HyStart on versus HyStart off. The experiments
are done over the Internet, but designed to be as comparable
across runs as possible by interlacing runs serially to mini-
mize temporal differences.

Analysis of the results shows for a satellite Internet con-
nection, TCP sender and receiver buffer settings limit per-
formance, but when the maximum buffer settings are raised,
Linux auto-tuning does not impede exponential window
growth. TCP HyStart significantly limits start-up perfor-
mance, with HyStart off getting about twice as much band-
width as HyStart on during start-up, translating to faster Web
page (and similarly small) downloads. The advantage HyS-
tart off has over HyStart on carries over to when TCP flows
are competing for the satellite link bandwidth.

The rest of this report is organized as follows: Related
Work describes work in slow start and satellite Internet re-
lated to this paper, Methodology describes our testbed and
experimental methodology, Results analyzes our experiment
data, and Conclusions summarizes our conclusions and sug-
gests possible future work.

Related Work
This section describes work related to our paper, including
TCP slow start and TCP performance over satellite networks.

TCP Slow Start

Ha and Rhee [10] identify overshooting of the available band-
width during slow start as a problem for performance. They
propose Hybrid Slow Start (HyStart) that uses slow start for
growth, but incorporates additional signals to exit slow start
in addition to the traditional packet loss. These signals in-
clude ACK packet-trains and an increase in round-trip delays.
They evaluate HyStart in Linux TCP Cubic and show it can
increase link utilization for links from 10 to 400 Mb/s and
latencies up to 200 ms.

Ha and Rhee [11] continue their work with evaluation over
a broader set of systems (Linux, FreeBSD and Windows XP)
and network conditions (wireless and asymmetric networks),
with a comparison to other approaches. They show HyS-
tart outperforms by 2x to 3x standard slow start, particularly
for end hosts running Microsoft Windows (XP) and large
bandwidth-delay product networks.

Zong et al. [20] propose an enhanced TCP mechanism that
increases the amount of data transferred in the slow start
phase of TCP. Their approach uses the link latency compared
to a traditional (e.g., “wired”) network as a multiplier for
window growth, with some checks to differentiate wireless
packet loss from congestion packet loss. Evaluation shows
some promise to their approach, but implementation is only
via simulation.

Li et al. [14] look to overcome the high round-trip times
in satellite networks with a modification to slow start. Their
slow start increase is exponential, as in traditional slow start,
but becomes logarithmic as the desired thresholds is reached,
similar to the TCP Cubic algorithm [12]. Simulation results
show improvements to throughput over TCP Reno.

TCP over Satellite Networks

Obata et al. [16] evaluate TCP performance over actual (not
emulated, as is typical) satellite networks. They compare a
satellite-oriented TCP congestion control algorithm (STAR)
with NewReno and Hybla. Experiments with the Wideband
InterNetworking Engineering test and Demonstration Satel-
lite (WINDS) network show throughputs around 26 Mb/s and
round-trip times around 860 milliseconds. Both TCP STAR
and TCP Hybla have better throughputs over the satellite link
than TCP NewReno.

Wang et al. [19] provide preliminary performance evalua-
tion of QUIC with BBR on an emulated a satellite network
(capacities 1 Mb/s and 10 Mb/s, RTTs 200, 400 and 1000 ms,
and packet loss rates up to 20%). Their results confirm QUIC
with BBR has throughput improvements compared with TCP
Cubic for their emulated satellite network.

Utsumi et al. [18] develop an analytic model for TCP Hybla
for steady state throughput and round-trip time over satellite
links. They verify the accuracy of their model with simulated
and emulated satellite links (capacity 8 Mb/s, RTT 550 ms,
and packet loss rates up to 2%). Their analysis shows sub-
stantial improvements to throughput over that of TCP Reno
for loss rates above 0.0001%

Our Work

Our work extends the above work by using a commercial
satellite Internet network, not simulation, considering TCP
buffer settings and measuring the impact of HyStart on ver-
sus HyStart off. To the best of our knowledge, HyStart, in
particular, has not been evaluated on actual satellite networks.

Methodology

To evaluate the impact of TCP settings over satellite links,
we setup a testbed, serially bulk-download data with different
TCP settings, and analyze the results.

Testbed

We setup a Viasat satellite Internet link so as to represent a
client with a “last mile” satellite connection. Our servers are
configured to allow for repeated tests and comparative per-
formance by consecutive serial runs with all conditions the
same, except for the change in TCP settings.

Figure 1: Satellite measurement testbed.

Our testbed is depicted in Figure 1. The client is a Linux
PC with an Intel i7-1065G7 CPU @ 1.30GHz and 32 GB
RAM. There are two servers, each with an Intel Ken E312xx
CPU @ 2.5 GHz and 32 GB RAM. The servers and client all
run Ubuntu 18.04.4 LTS, Linux kernel version 4.15.0.

The servers connect to our University LAN via Gb/s Eth-
ernet. The campus network is connected to the Internet via
several 10 Gb/s links, all throttled to 1 Gb/s. Wireshark cap-
tures all packet header data on each server and the client.
The client connects to a Viasat satellite terminal (with a mo-
dem and router) via a Gb/s Ethernet connection. The client’s
downstream Viasat service plan provides a peak data rate of
144 Mb/s.

The terminal communicates through a Ka-band outdoor an-
tenna (RF amplifier, up/down converter, reflector and feed)
through the Viasat 2 satellite1 to the larger Ka-band gateway
antenna. The terminal supports adaptive coding and modula-
tion using 16-APK, 8 PSK, and QPSK (forward) at 10 to 52
MSym/s and 8PSK, QPSK and BPSK (return) at 0.625 to 20
MSym/s.

The Viasat gateway performs per-client queue manage-
ment, where the queue can grow up to 36 MBytes, allowing a
maximum queuing delay of about 2 seconds at the peak data

1
https://en.wikipedia.org/wiki/ViaSat-2

rate. Queue lengths are controlled at the gateway by Active
Queue Management (AQM) that randomly drops 25% of in-
coming packets when the queue is over a half of the limit (i.e.,
18 MBytes).

The performance enhancing proxy (PEP) that Viasat de-
ploys by default is disabled for all experiments in order to as-
sess congestion control performance independent of the PEP
implementation, and to represent cases where a PEP could
not be used (e.g., for encrypted flows).

Our previous work [6] assessed baseline performance for
the link (i.e., without any added traffic) and shows the vast
majority (99%) of round-trip times are from 560 and 625 mil-
liseconds (median 597 ms, mean 597.5 ms, standard deviation
16.9 ms), and average packet loss rates are about 0.05%, with
most of these (77%) single-packet losses.

Downloads

We compare the performance for bulk-downloads, which al-
lows us to assess start-up as well as steady state performance.
The servers are configured to use iperf2 (v3.3.1) with the
default Linux TCP congestion control algorithm (Cubic). The
client initiates a connection to one server via iperf, down-
loading 1 GByte, then proceeds to the next test condition.
After cycling through each setting, the client pauses for 1
minute. The process repeats either 5 or 10 times. We ana-
lyze results from a weekday before 6pm (local time) in May
2021.

Given the measured round-trip times and the peak data rate,
the bandwidth-delay product (BDP) of our satellite link is ap-
proximately 140Mb/sec × 0.6sec = 10.5MBytes. When
indicated, the default TCP buffer settings are changed on
the server and/or client – e.g., setting tcp mem, tcp wmem

(wmem), tcp rmem (rmem) or tcp moderate rcvbuf – be-
fore starting iperf.

Results

This section analyzes performance for TCP buffer settings
and then TCP HyStart.

Buffer Settings

For high-bandwidth, high-latency networks, TCP buffer sizes
on either the sender or receiver can limit throughput.

As of Linux kernel v2.4 (in 2001), the kernel in-
cludes code for TCP buffer sizing. Buffer limits are con-
trolled by kernel variables net.ipv4.tcp rmem (rmem) and
net.ipv4.tcp wmem (wmem). The rmem and wmem set-
tings have 3 values that specify the minimum, starting and
maximum buffer sizes (in bytes). The rmem defaults are
(4096, 131072, 6291456) and the wmem defaults are (4096,
16384, 4194304). For flows that do not explicitly set the TCP
buffer sizes, the kernel attempts to grow the window size to
match the available bandwidth up to the maximum window.
The number of bytes a TCP congestion window can have in
flight is the minimum receiver window (rwind), congestion
window (cwnd), and the sender buffer size (wmem). The re-
ceiver window can use up to 1/2 the rmem setting, with the
remaining space is reserved for overhead.

2https://software.es.net/iperf/

As of Linux kernel v2.6 (in 2006), in order to over-
come buffer limitations without having to pre-allocate large
amounts of memory or manually tune buffer sizes for each
network path, Linux includes an auto-tuning feature. Auto-
tuning can be disabled system-wide at the receiver,3 but there
is no such setting for auto-tuning at the sender. Auto-tuning
code from net/ipv4/tcp input.c in our kernel (v4.15)
shows the receiver buffer size grows by either 3x or 4x, de-
pending upon the rate the buffer is increasing. With auto-
tuning, however, performance may be still limited by the
maximum buffer sizes for high-bandwidth, high-latency net-
works.

Keeping the wmem default settings, we evaluate the ef-
fects of manually changing rmem compared to auto-tuning
the receiver window. Figure 2 depicts the results. The text in
bold at the top highlights the settings that have been changed
from the default settings. From the left, the first graphs are
for the rmem default settings, the second are for the starting
value doubled, the third are for the maximum doubled, and
the right is for minimum, starting and maximum all set to 60
Mbytes. For each set of graphs, the x axis is the time, in
seconds, since the download started. The charts are aligned
temporally and stacked, and from the top down are through-
put, round-trip time, rwnd, cwnd and retransmissions. Each
line is the mean across 5 runs, computed once per second,
with the shading showing 95% confidence intervals around
the mean. The blue lines are with receiver auto-tuning on and
the orange lines are with receiver auto-tuning off.

From the graphs, the throughput for receiver auto-tuning
is similar in all cases – effectively, rwnd is capped at 1/2
the default max, or about 3 MBytes, which limits through-
put to about 30 Mb/s for stacks 1 and 2. For stacks 3 and 4,
rwnd is no longer the limit, growing larger than 3 Mbytes,
but throughput is still limited by wmem (which we explore
next). Without receiver auto-tuning, throughput is severely
limited by the default 131 KBytes in the first stack of graphs,
is doubled for the second, does not benefit from an increased
max for the third, and finally works about as well auto-tuning
when the rmem settings are set large (60 MBytes) in the
fourth stack of graphs.

Noting that throughputs are limited even for large rmem
settings, we next investigate increasing sender-side limits on
the buffer by setting wmem to 60 Mbytes for the minimum,
default and maximum. Figure 3 depicts the results. The
graphs are as for Figure 2, but here the wmem settings have
all been increased.

From the figure, the first two stacks of graphs appear sim-
ilar to those in Figure 2 because performance is receiver-
window limited. However, when the maximum is doubled
in the third stack, the TCP flows can take advantage and the
throughput increases. But it is not until the fourth stack, when
both the sender (wmem) and receiver (rmem) limits have
been overcome that throughputs reach the expected rates of
about 120 Mb/s for our satellite link.

However, previous work mentions receiver auto-tuning in
Linux occasionally delayed the exponential growth of the
TCP congestion window [11]. To assess this, Figure 4 zooms

3
sudo sysctl net.ipv4.tcp moderate rcvbuf=0

Figure 2: wmem default. rmem: default, 2x starting, 2x max, all 60 MB.

Figure 3: wmem 60 MB. rmem default, 2x starting, 2x max, all 60 MB.

in on the first 15 seconds of downloads with 60 MB set-
tings for wmem and rmem. From this stack, both receiver
auto-tuning on and receiver auto-tuning off show exponential
growth in the congestion window, without a visual difference
between the two of them.

Recommendation Linux has auto-tuning (tcp-
moderate rcvbuf) enabled by default. Given we did

not observe performance degradations due to auto-tuning
during slow start and did observe significant benefits to
growing sender and receiver windows up to the maximum,
we recommend auto-tuning remain enabled by default.

For the TCP receiver buffer (rmem) the defaults are (4096,
131072, 6291456) and for TCP sender buffer (wmem) the
defaults are (4096, 16384, 4194304). Since we observed
the buffer maximums limiting throughput for our high-
bandwidth, high-latency satellite network, we recommend the
maximum for both to be increased to 26214400 – i.e., rmem
to (4096, 131072, 26214400) and wmem to (4096, 16384,
26214400).

HyStart

Using 60 Mbyte settings for minimum, default, and maxi-
mum for both rmem and wmem, we next turn our attention to
the performance of HyStart.

Figure 5 depicts the results comparing HyStart on versus
HyStart off, done one flow at a time (serially, interleaving
HyStart on/off runs). The graphs are as for Figure 2, with
10 runs for each condition (on/off). From the stacked graphs,
HyStart off ramps up throughput more quickly than HyStart
on, getting to steady state throughput in about 15 seconds ver-
sus 35 seconds, on average. Correspondingly, HyStart off
finishes the 1 GB download 25 seconds earlier than HyStart
on (100 seconds versus 125 seconds total). These gains are
without observable differences in the retransmission rates.

Since HyStart primarily affects slow start, we compare the
start-up behavior for HyStart on versus HyStart off by ana-
lyzing the first 30 seconds of each trace, approximately long
enough to download 50 MBytes on our satellite link. This
is indicative of algorithm performance for some short-lived
flows.

The average Web page size for the top 1000 sites was

Figure 4: 60 Mbyte wmem and rmem settings.

Figure 5: HyStart on/off overall.

around 2 MBytes as of 2018 [7], including HTML payloads
and all linked resources (e.g., CSS files and images). The
Web page size distribution’s 95th percentile was about 6
MBytes and the maximum was about 29 MBytes. Today’s
average total Web page size is probably about 5 MBytes [9],
dominated by images and video.

Many TCP flows stream video content and the amount

streamed depends upon the video encoding. However, as-
suming videos are downloaded completely, about 90% of
YouTube videos are less than 30 MBytes [4].

Figure 6 depicts the time on the y-axis (in seconds) to
download an object for the given size on the x-axis (in
MBytes). The object size increment is 1 MByte. Each point is
the mean time required to download an object of the indicated
size, shown with a 95% confidence interval.

Figure 6: HyStart on/off start-up

From the graph, HyStart off has a significant benefit to
download times. For the smallest objects (1 MByte), HyStart
on takes about 50% longer (6 versus 9 seconds). For an aver-
age Web page download (5 MBytes), HyStart on takes about
2x longer (8 versus 16 seconds), a ratio similar for 90% of all
videos and the largest Web pages (30 MBytes) (11 versus 22
seconds).

Figure 7: HyStart options.

HyStart includes two different mechanisms to detect when
the TCP slow start state should be exited:

1. packet-train: When the ACK inter-arrival time goes over a
threshold, it exits slow start early.

2. delay: when the round-trip time increases over a threshold,
it exits slow start early.

By default, both delay and packet train are on by default.
We explore the effect these mechanisms have individually and
in tandem.

Figure 7 depicts the throughput results comparing the HyS-
tart options (again, run serially, one flow at a time), with 5
runs per option. The x-axis is the time since the download
started and the y-axis is the throughput. Each option (1, 2
and both) is shown with a mean bounded by a 95% confi-
dence interval. For reference, the average HyStart off mean
performance is shown with a dashed line. From the graph, the
packet-train only option 1 performs similarly to HyStart off,
suggesting the packet-train method does not cause an early
exit. Conversely, the delay only option 2 performs similarly
to HyStart with both option 1 and option 2, suggesting the
delay mechanism is what causes HyStart to exit slow start.
Note the proposed HyStart++ algorithm [1] does not include
the packet-train option, only the round-trip time delay option.

Lastly, we analyze the effects that HyStart has for TCP
flows run simultaneously (i.e., the flows are competing for
the link bandwidth, unlike the previous cases where they were
run serially). Figure 8 shows two sets of runs: in Figure 8(a),
two default TCP flows are run, so both have HyStart on, and
in Figure 8(b), one TCP flow has HyStart on and the other
TCP flow has HyStart off. Both graphs show the means for 5
runs bounded by 95% confidence intervals.

Computing Jain’s fairness index [13] shows two HyStart
on flows (Figure 8(a)) has a fairness of 1.0 for the first 15
seconds, and 1.0 at steady state (time 55-115 seconds), while
one HyStart on flow versus one HyStart off flow (Figure 8(b))
has a fairness of 0.56 for the first 15 seconds, and 1.0 at steady
state.

From the graphs and Jain’s fairness, two TCP flows with
HyStart on (the Linux default) get approximately the same
bandwidth in start-up and steady state. Conversely, when one
of the TCP flows has HyStart off, it get significantly more
throughput during start-up, which translates to more through-
put for the first 40 seconds of the transfer, with corresponding
unfairness.

Recommendation Since we observed HyStart’s prema-
ture exit of TCP slow start over our high-bandwidth, high-
latency satellite network can significantly limit throughput,
we recommend some changes to the HyStart code. The
HYSTART DELAY MAX parameter provides an upper bound on
the deviation from the minimum observed delay that triggers
HyStart’s exit of slow start. However, this parameter is cur-
rently fixed (16U<<3) regardless of the underlying network’s
parameters. To address this shortcoming, we recommend one
of two possible changes: 1) Remove the maximum limit, al-
lowing the HyStart threshold trigger to be only determined by
the relative deviation from the base latency (currently, 1/8th
of the base latency), or 2) adjust the HyStart threshold trigger
to be dynamic, based on the mean and standard deviation of
the observed network latency. Further tests over a wide range
of network conditions (i.e., not just our satellite network) are
needed to determine which approach is appropriate.

Conclusion

HyStart is designed to improve TCP performance by avoiding
loss caused by a slow start overshoot, but HyStart itself can
degrade performance if slow start undershoots. This under-
shoot can be especially problematic for networks with high

bandwidth and high delay, such as satellite Internet networks.
Satellite Internet connections are important for providing reli-
able, ubiquitous connectivity with high bandwidths, but pose
challenges to TCP due to their high latencies.

This paper presents results from experiments on a produc-
tion satellite Internet network, comparing the effects of TCP
with HyStart on versus TCP with HyStart off. Also consid-
ered are the effects of TCP buffer settings at the sender and
receiver, both manual settings and auto-tuned, and the impact
these settings have in limiting TCP performance.

Analysis of the results shows Linux defaults for buffer set-
tings are not sufficient to achieve more than a fourth of the
available bandwidth (about 30 Mb/s out of 120 Mb/s) on the
satellite link, owing to buffer limits that are reached before
the link is saturated. Buffer auto-tuning is effective at ad-
justing the sender and receiver buffers up to their maximums,
but the default maximums need to be increased to saturate
the satellite link. Auto-tuning itself does not appear to limit
exponential window growth during slow start.

Over our satellite link, TCP HyStart degrades performance
by exiting slow start too early, making it take longer for flows
to reach the available bandwidth. Start-up downloads are
about 2x faster with HyStart off than with HyStart on, down-
loading Web-page sized objects in 7 seconds versus 14 sec-
onds. These effects persist when TCP flows compete over
the satellite link, with TCP flows that have HyStart off get-
ting about 5x more bandwidth during starting conditions than
TCP flows with HyStart on.

The insights on buffer sizes and HyStart should be useful
for improving TCP performance over high-bandwidth, high-
latency networks such as for satellite Internet.

There are several areas we are keen to pursue as future
work. There are other settings to TCP, such as the initial
congestion window, fast convergence, the β parameter for
window factor decrease, and HyStart setting, that may have a
significant impact on performance. For flows competing for a
satellite Internet link bottleneck there, are other TCP conges-
tion controls available in Linux that are of interest, including
but not limited to bandwidth estimation-based BBR [15] and
satellite-optimized Hybla [3].

References

[1] Balasubramanian, P.; Huang, Y.; and Olson, M. 2020.
HyStart++: Modified Slow Start for TCP. IETF Draft
draft-balasubramanian-tcpm-hystartplusplus-03.

[2] Barakat, C.; Chaher, N.; Dabbous, W.; and Altman,
E. 1999. Improving TCP/IP over Geostationary Satellite
Links. In Proceedings of GLOBECOM.

[3] Caini, C., and Firrincieli, R. 2004. TCP Hybla: a
TCP Enhancement for Heterogeneous Networks. Interna-
tional Journal of Satellite Communications and Network-
ing 22(5):547–566.

[4] Che, X.; Ip, B.; and Lin, L. 2015. A Survey of Current
YouTube Video Characteristics. IEEE Multimedia 22(2).

[5] Cisco. 2015. Interface and Hardware Component Con-
figuration Guide, Cisco IOS Release 15M&T. Cisco Sys-
tems, Inc. Chapter: Rate Based Satellite Control Protocol.

(a) HyStart On versus HyStart On (b) HyStart On versus HyStart Off

Figure 8: Simultaneous flows

[6] Claypool, S.; Chung, J.; and Claypool, M. 2021. Com-
parison of TCP Congestion Control Performance over a
Satellite Network. In Proceedings of the Passive and Ac-
tive Measurement Conference (PAM).

[7] Data and Analysis. 2018. Webpages Are Getting
Larger Every Year, and Heres Why it Matters. Solar
Winds Pingdom. Online at: https://tinyurl.com/
y4pjrvhl.

[8] Dong, M.; Li, Q.; Zarchy, D.; Godfrey, P. B.; and
Schapira, M. 2015. PCC: Re-architecting Congestion
Control for Consistent High Performance. In Proceed-
ings of the 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI).

[9] Everts, T. 2017. The Average Web Page is 3
MB. How Much Should We Care? Speed Mat-
ters Blog. Online at: https://speedcurve.com/

blog/web-performance-page-bloat/.

[10] Ha, S., and Rhee, I. 2008. Hybrid Slow Start for High-
Bandwidth and Long-Distance Networks. In International
Workshop on Protocols for Fast Long-Distance Networks.

[11] Ha, S., and Rhee, I. 2011. Taming the Elephants: New
TCP Slow Start. Computer Networks 55(9).

[12] Ha, S.; Rhee, I.; and Xu, L. 2008. CUBIC: A New TCP-
Friendly High-Speed TCP Variant. ACM SIGOPS Operat-
ing Systems Review 42(5).

[13] Jain, R. 1991. The Art of Computer Systems Per-
formance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. John Wiley and
Sons, Inc.

[14] Li, N.; Tu, Y.; and Deng, Z. 2019. Satellite network
oriented tcp slow start algorithm. In IEEE International
Conference on Communication Technology (ICCT).

[15] N. Cardwell and Y. Cheng and C. S. Gunn and S. H.
Yeganeh and Van Jacobson. 2017. BBR: Congestion-
based Congestion Control. Communications of the ACM
60(2):58–66.

[16] Obata, H.; Tamehiro, K.; and Ishida, K. 2011. Experi-
mental Evaluation of TCP-STAR for Satellite Internet over
WINDS. In Proceedings of the International Symposium
on Autonomous Decentralized Systems.

[17] Satellite Industries Association. 2020. Introduction to
the Satellite Industry. Online presentation: https://
tinyurl.com/y5m7z77e.

[18] Utsumi, S.; Muhammad, S.; Zabir, S.; Usuki, Y.;
Takeda, S.; Shiratori, N.; Katod, Y.; and Kimb, J. 2018. A
New Analytical Model of TCP Hybla for Satellite IP Net-
works. Journal of Network and Computer Applications
124.

[19] Wang, Y.; Zhao, K.; Li, W.; Fraire, J.; Sun, Z.; and Fang,
Y. 2018. Performance Evaluation of QUIC with BBR in
Satellite Internet. In Proceedings of the 6th IEEE Inter-
national Conference on Wireless for Space and Extreme
Environments (WiSEE).

[20] Zong, L.; Bai, Y.; Zhao, C.; Luo, G.; Zhang, Z.; and
Ma, H. 2020. On Enhancing TCP to Deal with High La-
tency and Transmission Errors in Geostationary Satellite
Network for 5G-IoT. Hindawi Security and Communica-
tion Networks 2020(6693094).

