Active Queue Management for Web Traffic

Mark Claypool, Robert Kinicki, Matthew Hartling
CS Department at Worcester Polytechnic Institute
Worcester, MA 01609, USA
{claypool,rek }@cs.wpi.edu

Abstract

The focus in Active Queue Management (AQM) re-
search has been on traffic that is long-lived, insensitive
to delay, and often has large TCP congestion windows.
However, the majority of the flows on the Internet to-
day are Web flows, which are short-lived, more sensitive
to delay, and typically have small TCP congestion win-
dows. In particular, short-lived flows with small conges-
tion windows frequently suffer from timeouts when en-
countering packet loss. This paper presents and evalu-
ates a new AQM scheme, SHort-lived flow friendly RED
(SHRED), targeted at providing better network perfor-
mance for short-lived Web traffic. Using an edge hint
to indicate the congestion window size in each packet
sent by the flow source or by an edge router, SHRED
preferentially drops packets from short-lived Web flows
less often than packets from long-lived flows. A wide-
range of simulation results and analysis demonstrate
that SHRED protects short-lived flows from unneces-
sary timeouts, improving the response time characteris-
tics for Web traffic when the router becomes congested,
while not degrading overall network performance.

1 Introduction

The continually growing World Wide Web is signif-
icantly changing the nature and characteristics of In-
ternet traffic. An Internet traditionally made up of file
transfer and email applications is being overwhelmed by
newer, more-sophisticated and more-demanding Web-
based applications that require a range of network ser-
vices, from small object transfers such as advertise-
ments and buttons, to retrieval of streamed multimedia.
Whereas applications such as file transfers are concerned
with throughput and packet loss rates, applications such
as Web browsers that frequently request many short
downloads care about response time and throughput.

Active Queue Management (AQM) research has fo-
cused on evaluating the benefits of congestion control al-
gorithms by analyzing the performance of traffic mixes
dominated by long-lived TCP flows. Most of the im-
provements and variations proposed for Random Early
Detection (RED) [6] have been evaluated using pre-
dominately long-lived flows. However, [3] showed that

RED provides little benefit when traffic consists solely
of short-lived Web flows, and under highly congested
circumstances RED can perform worse than Drop Tail.
This paper proposes an AQM solution based on RED,
but applicable to other AQMs, that seeks to improve
Web traffic performance.

A typical Web page is composed of text, pictures,
advertisements and other embedded Web objects. Of-
ten each Web object is transfered over a separate TCP
connection. Even when there are multiple objects per
TCP connection, most Web TCP connections tend to be
short-lived flows [10]. Transmitting only a small number
of packets, these short-lived flows spend most of their
lifetime in TCP’s slow-start phase with small TCP win-
dow sizes. In contrast, long-lived flows transmit a larger
number of packets predominantly during TCP’s conges-
tion avoidance phase with larger TCP window sizes.

Small TCP window sizes can significantly affect
short-lived flows in several ways [8]. First, a small TCP
window yields a lower transmission rate. Second, short-
lived flows are more sensitive to packet drops because
small windows increase the likelihood that a packet drop
will result in a retransmission timeout that adds signif-
icant delay to the transfer of a small object. Finally,
TCP’s fast retransmit is ineffective at preventing re-
transmission timeouts when a packet is dropped at the
beginning and end of the transmission. In general, past
work in Web flows and AQM [2, 17, 19, 20] does not sup-
port a continuum of treatments for short- to long-lived
flows and/or requires per-flow state at the router.

This paper proposes a SHort-lived flow variant of
RED, called SHRED, that provides preferential drop-
ping for flows with small windows. Sources mark each
packet with its current window size, allowing SHRED to
drop packets from flows with small TCP windows with
a lower probability. This reduces the negative effects of
small windows sizes, protects short-lived flows from low
transmission rates, and provides fairer bandwidth allo-
cation among flows. Although SHRED is implemented
based on RED, the core ideas in SHRED can be applied
to most other AQM approaches.

We use NS-2 simulations in this investigation to com-

pare the performance of SHRED, RED and Drop Tail
under traffic scenarios that include Web traffic only,
mixed Web and FTP traffic, and FTP only traffic. Ad-
ditionally, we briefly discuss a Web traffic generator de-
veloped to facilitate properly analyzing AQMs with Web
traffic.

Our analysis shows that: for Web only traffic,
SHRED performs slightly better than Drop Tail for low
to moderate congestion levels, whereas RED performs
worse than Drop Tail; RED always performs better than
Drop Tail for mixed traffic environments; and SHRED
performs significantly better than RED and Drop Tail
with mixed traffic and Web only traffic for moderate to
high levels of congestion.

This paper is structured as follows: Section 2 de-
scribes the SHRED architecture and algorithm details;
Section 3 describes the experiments designed to evaluate
SHRED, RED and Drop Tail over a range of traffic con-
ditions; Section 4 analyzes the performance of SHRED
and compares it to RED and Drop Tail; Section 5 dis-
cusses some issues to address in deploying SHRED; and
Section 6 summarizes our conclusions and presents pos-
sible future work.

2 SHRED
2.1 Short-lived Flow Issues

For both congestion and flow control, TCP uses a
congestion window (cwnd) to limit a flow’s sending rate.
TCP initializes the value of cwnd to one at the be-
ginning of the connection and, each round-trip time
either doubles cwnd (during slow start) or increases
cwnd by one (during congestion avoidance). However,
since short-lived flows send only a few packets for each
connection, they typically have small cwnds. There-
fore, TCP flows with small cwnds receive a lower effec-
tive data rate than TCP flows with larger cwnds since
the smaller window-sized flows require more round-trip
times to send and acknowledge packets.

A second problem with short-lived TCP flows is that
TCP’s fast retransmit is ineffective when the cwnd is
less than four. Fast retransmit requires the receipt of
three duplicate acknowledgments (acks) by the TCP
sender to trigger retransmission of a lost packet instead
of waiting for a full retransmission timeout (RTQ) pe-
riod, often at least one second. TCP flows with a small
cwnds are unable to send enough packets to generate
three duplicate acks. Moreover, loss of the first packet
(a SYN packet) costs small cwnd flows even more time
since the initial retransmission timeout (ITO) is typi-
cally conservatively set to three seconds.

A third problem with short-lived TCP flows occurs
at the end of a TCP connection. If one of the last
three packets is dropped, the TCP source does not
send enough additional packets to trigger three dupli-

cate acks and an RTO occurs. Typically, the last three
packets consist of the last two data packets and the TCP
FIN packet. Therefore, for small Web objects all packet
drops at a congested router will result in a costly RTO.
Even for larger objects many dropped packets still result
in an RTQ. Thus, short-lived Web flows are more likely
to suffer significant performance degradation when their
packets are dropped than are long-lived flows.
2.2 SHRED Algorithm

The fundamental idea of SHRED is to use a lower
drop probability for flows with small cwnds and have the
drop probability increase linearly with a flow’s increased
relative cwnd size. As in the core-edge architecture used
by Core Stateless Fair Queuing [18], an edge hint pro-
vides flow information, such as sending rate, to core
routers to more efficiently manage congestion. Edge
hints eliminate the need for per-flow state information in
core routers. With SHRED, the sending host or the edge
router inserts the current value of cwnd, a TCP state
variable, into the IP packet header. The SHRED core
router extracts the cwnd value (cundggmpre) from the
arriving packet and computes an exponentially weighted
average cwnd (cwndayg) as shown:

cwndavg = (1 — we)cwndavg + (We)cwndsampie (1)

where w, is set to 0.002, the same setting as originally
recommended for RED’s w,. *

cwndgy,g is biased towards flows that send more pack-
ets because cwnd,,y is updated for each packet arrival.
However, flows that send more packets have higher
cwnds, and a higher cwndg,,g results in an even lower
drop probability for packets with smaller cwnds. This
is the desired behavior.

0 \

i 1 *
5 min, min, ., max, 2*max,,

Figure 1: Computing Drop Probability in SHRED.

In SHRED, the packet drop probability is ad-
justed from that of gentle RED based on the ratio of
cwndggmple t0 cwndyyy. As depicted in Figure 1, based

 http:/ /www.aciri.org/floyd/REDparameters.txt

on this cwnd ratio, SHRED modifies miny, and maz,
such that the slope of the drop probability line remains
the same for a given set of RED parameters:

. . . Cwndsample
MINth—mod = MiNth + (Mazi, —ming,) X (1 — —————
cwndavg

(2)

If the cwnd ratio is equal to 1, ming,_moq remains at
ming,. If the cwnd ratio is greater than 1, ming,_modq
is set lower than ming,. If the cwnd ratio is less than
1, mingp_moq is set to a value between ming, and
maxy,. Based on recommendations,? the lower bound
for ming,—moq is set at five packets. The upper bound
for ming,—moq is asymptotic to maxyp, .

Once mingp—moq is adjusted, maz, is modified so as
to maintain the slope of the original RED drop proba-
bility line:

MaTth — MiNth—mod
maxip, — MiNgh

®)

MATp—mod = MATp X
Given mingp—moq and mazy_moq, SHRED computes
the packet drop probability:

Qavg — MANtK—mod (4)
MaTth — MINth—mod

Pb = MATp—_mod X

with the remainder of the algorithm implementation
identical to RED.

3 Experiments

This section discusses the experimental methodology
used to evaluate SHRED, Drop Tail and RED.
3.1 Web Traffic Generation

Typically, Web traffic is simulated using one or more
Web servers and a fixed number of Web clients. Web
clients generate load on a router from empirically or
mathematically derived parameters that may include:
reply size, response size, think time, inter-object arrival
time, and the number of objects per Web page.

When the number of Web clients stays fixed, in-
creased router congestion causes increased Web re-
sponse times. This, in turn, reduces the client’s request
rate which effectively decreases the load generated by in-
dividual clients and the total network load seen by the
router. While this accurately mimics the behavior of
individual Web clients, it does not necessarily provide
an accurate network representation from the router’s
perspective. Many Web servers, especially those from a
content distribution network, serve only part of a Web
page and do not receive subsequent requests from the
same client [10]. Clients often retrieve only one or two
pages from a Web server before going to another Web

2http://www.aciri.org/floyd/REDparameters.txt

site and so do not generate subsequent requests to the
same server. Moreover, during flash crowds, the rate
of users initially connecting is not influenced by the re-
sponse time. Since existing ns-2 Web traffic models all
decrease their offered load during congestion, we devel-
oped a Web traffic model that produces a fixed offered
load through the router, independent of the level of con-
gestion.

Our traffic generator sends Web pages, composed of
multiple Web objects, to a traffic sink. We assume a
model where each object in the Web page is a separate
TCP connection.> The page generation rate is deter-
mined based on the previous page size and the aggregate
load, in bits per second, specified during the simulation
setup. The Web traffic generator sends all objects in a
Web page and then waits for an amount of time deter-
mined by the page generation rate before sending the
next page.

Since the model constructed for this research is a best
case scenario in terms of Web page response time in
that the primary object and all secondary objects are
downloaded in parallel, actual response time differences
due to AQM strategies (see Section 4) should be more
dramatic than the simulation results presented here.

The Web traffic generated within ns-2 for this study
uses the built in Pareto II function to generate Web
reply object sizes. Based on previous findings in [15]
and [7], 1.2 is used as the Pareto shape parameter with
10 KBytes as the average size parameter. The mini-
mum and maximum object sizes are set to 12 Bytes and
2 MBytes, respectively. All the simulations used for
the experiments use 1 object per page unless otherwise
noted. Section 4.5 shows separate simulations with the
number of objects set to 1, 1-8 objects, 1-16 objects,
and 1-32 objects to evaluate the impact of number of
objects per page on response time.

3.2 Metrics

We use both user-centric measurements that allow
us to study evaluate the impact of Drop Tail, RED and
SHRED on Web traffic and network-centric measure-
ments that allow us to evaluate the impact of the same
AQM techniques on overall network dynamics and long-
lived traffic.

For user-centric measurements, we define object
transmission time as the time taken to transfer a single
Web object from a server to the client and Web response
time as the time taken to download all objects in a Web
page. While users certainly desire low response times,

3While HT'TP/1.1 [16] enables multiple objects to be trans-
ferred over a single connection, in times of heavy server load, Web
servers may close even persistent connections [14]. Moreover, [1]
found nearly half of all TCP connections to a Web server use mul-
tiple connections. Lastly, many Web servers deliver only part of
a Web page and so do not receive subsequent requests from the
same client.

users also desire low object transmission times since this
indirectly results in a low response times. Moreover,
typical Web browsers can display part of a page when
complete objects are downloaded even if the entire page
is composed of multiple objects. Routers should try
to minimize object transmission time, not only to pro-
vide better end-user performance, but also to reduce the
number of flows through the router.

For network-centric measurements, we evaluate the
percentage of packets dropped per flow for both Web
and FTP traffic and goodput and Jain’s Fairness in-
dex [12] for FTP traffic.

3.3 Experiment Setup

The network configuration used for all the experi-
ments in this investigation is shown in Figure 2. The
base RED parameters were set according to the latest
recommended values,* and the Drop Tail queue size is
the same as that for RED. Although ns-2 RED sim-
ulations often set queue thresholds based on packets,
since many Web reply objects are smaller than a single
packet, byte-based queue thresholds were used in this
research. All the experiments were run for 160 seconds
with measurements taken after the first 20 seconds for
experiments using FTP traffic to allow long-lived flows
to stabilize before collecting performance data. A few
select tests were run to show that the results presented
here are stable under longer durations, but shorter tests
were used in light of the number of experiments re-
quired. For all experiments, both the FTP traffic and

the Web traffic used TCP Reno.

10 Mbls 100 Mb/s
60 ms 1ms

100 Mb/s

Congested
Router

Router

| RED Paramters !

imine= 30pkts |
i maxn=90pkts i

imaxe= 0.1 ;
iwe= 00008 i

{ avg pki= 974 bytes]
i maxe= 225 pkts

Figure 2: Network Configuration.

4 Analysis

The first set of Web-only experiments allows AQM
performance evaluation similar to that in [3]. The sec-
ond set of Web-mized experiments analyzes performance
with both Web and long-lived traffic. MCI backbone
measurements [13] show that 75% of the flows and bytes

4See http://www.aciri.org/floyd/REDparameters.txt and [5].
Although the gentle setting is recommended for RED routers, it
was not a factor in our experiments since average queue sizes
remained below the maximum threshold.

are Web, and Sprint backbone measurements [4] show
90% of the flows send fewer than 20 packets. Thus, in
the second set of experiments, the number of FTP flows
is fixed at 10 while the Web-traffic load is varied be-
tween 40 and 80 percent of the bottleneck bandwidth
(10 Mbps). The third set of FTP-mized experiments
fixes the Web traffic load at 50 percent and varies the
number of FTP flows between 0 and 40. The last set of
FTP-only experiments shows the impact of SHRED on
only long-lived flows.

4.1 Web-only Experiments

0.8 -

0.6 -

Fraction of objects

0.2 -

Uncongested ------ -
SHRI

0 -7 L L
0 200 400 600 800 1000

Transmission Time (ms)

(a) Body

Fraction of objects

08 1 B

0.75 | A
Uncongested ------ -
SHRED ——
RED +eeseees
DropTai‘I - - -

07 L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Transmission Time (ms)

(b) Tail

Figure 3: Transmission Time CDF for 100 percent load
(average of 140 active flows)

To provide an upper bound on Web traffic perfor-
mance, we obtained object transmission times for a sim-
ulated uncongested router of capacity 100 Mbps that

08

06 -

Fraction of objects

04

02 r

Uncongested --------
SHR

o . "')) | DropTail - - -
0 200 400 600 800 1000
Transmission Time (ms)

(a) Body

085 B

Fraction of objects

08l 4

0.75 A
Uncongested --------
SHRED ——
RED sereese
) DropTai‘I - - -

0.7 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Transmission Time (ms)

(b) Tail

Figure 4: Transmission Time CDF for 70 percent Web
load (average of 84 active flows) and 10 FTP flows

experienced little queuing delay and no packet drops.
The cumulative density function of transfer times for
the uncongested router has “steps” in Figure 3 due to an
initial window size of 1 and the TCP slow-start phase.
Specifically, an object small enough to fit in a single
packet is transmitted in one round-trip time (RTT); an
object as large as two or three packets is transmitted in
two RTTs; and an object as large as four to seven pack-
ets is transmitted in three RTTs. This effect continues
throughout the slow-start phase.

In Figure 3, at 100 percent Web-only load (95% and
105% Web loads are given in [9]), Drop Tail begins to
degrade as the queue is frequently full and the queu-
ing delay for all packets becomes large. With a queue
size of 225 packets, a packet takes approximately 175
ms to traverse the queue. Adding this queuing delay to

the 120 ms RTT, objects consisting of a single packet
take roughly 300 ms to transfer; objects of two or three
packets in length take 600 ms to transfer; and objects
between 4 and 7 packets in length take 900 ms to trans-
fer. Furthermore, packet drop bursts induced by Drop
Tail make it difficult for the small-windowed TCP flows
to employ fast retransmit. At 100 percent load, RED
performs slightly better than Drop Tail, while SHRED
has the best performance.

4.2 Web-mixed Experiments

Figure 4 shows the performance of SHRED for the
Web-mixed experiments with 70% Web load and 10
FTP flows (Web loads of 60% and 80% are given
in [9]). SHRED consistently provides a substantial per-
formance improvement over both Drop Tail and RED.
The SHRED CDF is much closer to the uncongested
router CDF than either RED or Drop Tail. Analysis
of the CDF tails suggest that at least 5 to 10 percent
of RED’s performance degradation is due to RTOs (be-
tween 1 and 2 seconds) and an additional 2 to 5 percent
degradation is from ITOs. Drop Tail suffers a perfor-
mance degradation of at least 5 to 8 percent due to
RTOs and an additional 4 to 10 percent degradation
from ITOs. SHRED largely avoids performance degra-
dation due to ITOs and is less affected by RTOs than
both RED and Drop Tail. Lastly, contrary to results in
Section 4.1 and [3], RED, running a more realistic mix-
ture of short-lived and long-lived flows, performs con-
sistently better than Drop Tail for all loads.

Figure 5 summarizes the SHRED performance ben-
efit over RED and Drop Tail for the mixed traffic ex-
periments. SHRED provides a 12 to 17 percent perfor-
mance improvement over Drop Tail and this advantage
increases slightly as the Web traffic load increases. The
RED improvement over Drop Tail remains fairly con-
stant around 8 percent regardless of the load.

Figure 6 shows the percent drops for nine of the Web-
mixed experiments. Each bar in the graph separates
out the Web traffic drops from FTP traffic drops for
a given experiment. For each three column group, the
first column is the SHRED drop percentage while the
second and third column are drop percentages for RED
and Drop Tail, respectively. SHRED drops fewer Web
packets than either RED or Drop Tail and drops packets
more proportionally to the actual traffic mix. SHRED
yields the fewest drops at all three load levels.

4.3 FTP-mixed Experiments

The results from the FTP-mixed experiments are
similar to the results from the Web-mixed experiments.
Due to space constraints, we only summarize these ex-
periments, with more results in [9]. Figure 7 summarizes
the performance benefit of RED and SHRED over Drop
Tail for the FTP-mixed experiments for 10 to 50 FTP
flows and a Web load of 50%.

12+ ~

115 |

Normalized Transmission Time Benefit

11+ e e B
- e T T T e
1.05 - A
1

SHRED —+—

RED —-—x-—-

Droptail ---%---

0.95 i

40 45 50 55 60 65 70 75 80

Web Traffic Load

Figure 5: Normalized Transmission Time Benefit for
Web-mixed

0.01 — —

0.005 —f —

60_10shred 60_10ed 60_10- 70_10shred 70_10-ved 70_10- 80_i0-shred 80_10-ed 80_10-
droptail droptail droptail

Simulation

mWeb mFTP

Figure 6: Percent Drops for Web-mixed

SHRED provides an increase in benefit versus Drop
Tail with an increase in FTP load and SHRED performs
significantly better than RED at higher levels of con-
gestion. While RED performs consistently better than
Drop Tail, the benefit of SHRED to Web traffic widens
with an increase in the number of flows.

4.4 FTP-only Experiments

Although SHRED does not seek to improve perfor-
mance of long-lived flows, it should not have a negative
impact versus either Drop Tail or RED in the presence
of only long-lived traffic. We ran experiments with 10 to
100 FTP flows (no Web flows) under RED, SHRED and
Drop Tail, and compute the total goodput and Jain’s
fairness for all flows. Table 1 shows that SHRED’s per-
formance is similar to Drop Tail and slightly better than
RED for most of the experiments. Table 2 shows that
SHRED yields a slightly higher Jain’s Fairness value
than both RED and Drop Tail by providing a more uni-
form window size for all flows.

1.25

Normalized Transmission Time Benefit

RED
Droptail —--x---

0.95 I I I I I I

10 15 20 25 30 35 40 45
Number of FTP Flows

Figure 7: Normalized Transmission Time Benefit for
FTP-mixed

4.5

Since a Web page is not entirely usable until all its
objects have been downloaded, Web response time is
a more useful measure of performance for users than
transmission time. While [7] consider between 1-3 and
2-7 objects per page, recent measurements [14] imply
that today’s Web pages have considerably more objects
per page. Thus, we re-ran the Web-only and Web-mixed
experiments with a uniform random distribution of 1 to
8, 1 to 16, and 1 to 32 objects per page.

Web Response Times

50

45
SHRED 1 object —+—
SHRED 1-8 objects ---

x

el SHRED 1-16 objects ------
s SHRED 1-32 objects &
Droptail --m—
% 35
c
Q
[
g
= 3L B
2 1=
2
=]
a
3
@ 25 B R TR
T ki % R
N
E
S 2r
z

15

40 45 50 55 60 65 70 75
Web Traffic Load

Figure 8: Web Response Time Benefit for Web-mixed

Figure 8 summarizes the response time benefit of
SHRED over Drop Tail for the Web-mixed experiments
for 40% to 80% Web load and 10 FTP flows. Since our
Web traffic generator transmits all objects concurrently,

| Flows | SHRED | RED | Drop Tail |

10 9.4 9.6 10.0
20 9.7 9.7 10.0
30 9.8 9.8 9.9
40 9.7 9.7 9.9
50 9.7 9.7 9.8
60 9.6 9.6 9.8
70 9.5 9.6 9.7
80 9.5 9.3 9.6
90 9.4 8.7 9.6
100 9.3 8.4 9.5

Table 1: Goodput (Mbps)
| Flows | SHRED | RED | Drop Tail |

10 1.000 | 0.997 0.991
20 0.999 | 0.996 0.990
30 0.999 | 0.997 0.994
40 0.999 | 0.997 0.989
50 0.999 | 0.996 0.991
60 0.999 | 0.995 0.993
70 0.998 | 0.994 0.988
80 0.998 | 0.993 0.990
90 0.999 | 0.989 0.989
100 0.998 | 0.988 0.990

Table 2: Jain’s Fairness

Drop Tail routers see traffic as a burst of packets, con-
sisting of a large number of objects belonging to a page,
that are more likely to overflow the router queue. Un-
like the Web-only results, the response time benefit in-
creases approximately linearly as the number of objects
increases and remains constant over all loads except for
the experiments with 1-32 objects per page. SHRED
provides over 60 percent response time benefit over Drop
Tail for Web pages with 1-8 objects and over 140 per-
cent response time benefit over Drop Tail for pages with
1-16 objects. For pages with 1-32 objects and loads of
40% or 50%, SHRED provides response time benefits
greater than 250 percent. For higher loads, the SHRED
response time benefit reduce somewhat to between 175
to 200 percent.

5 Discussion of Deployment

The benefits of SHRED can be realized by incor-
porating SHRED into the next generation of Internet
routers. This section discuss practical deployment is-
sues facing SHRED.

The cwnd edge hint can be implemented in IPv4 us-
ing the TOS byte in the IP header. The TCP source
maintains cwnd in bytes, but can map it to a value
in packets using TCP’s maximum segment size (or any
mapping where a value of 1 yields the lowest drop prob-
ability and a value of 255 yields the highest). Using

the TOS byte gives 255 possible values for cwnd. For
IPv6, the cwnd edge hint can be implemented using an
extended header.

SHRED supports incremental deployment. Only
users and Internet Service Providers (ISPs) seeking im-
proved Web performance need to upgrade. If the TCP
source does not support SHRED, the SHRED router
uses normal RED dropping probabilities. Although
there far more TCP sources than routers, source op-
erating systems are easier to update since popular op-
erating systems issue updates multiple times a year. An
alternative to upgrading TCP in all end-host operating
systems would be to place a packet classifier at an edge
router that keeps per flow TCP state and inserts cwnd
hints into each packet.

Unfortunately, using cwnd hints provides opportu-
nities for misbehaving hosts to deliberately keep their
cwnd hint low to get reduced drop rates from SHRED
routers. Stagnant cwnd hints could be policed by the
first downstream router from the source keeping per flow
TCP state since all packets and TCP acknowledgments
for the source must pass through that router.

Another possible source of misbehaving is between
an ISP and a backbone provider, where the ISP could
set low cwnd hints such that all packets receive a lower
dropping probability, yielding better overall perfor-
mance for network traffic for the ISP. However, as back-
bone router’s are typically over-provisioned to avoid
packet drops [11], such false hints would not significantly
affect performance.

6 Conclusions

This paper presents SHort-lived flow friendly RED
(SHRED), an AQM mechanism designed to improve re-
sponse time for short-lived Web traffic. Using a cwnd
hint from a TCP source, SHRED computes the cwnd
ratio of an arriving packet to the cwnd average and re-
duces the probability of dropping packets during the
sensitive period when a flow’s cwnd is small. We ran ex-
tensive simulation experiments modeling Web-only traf-
fic, FTP-only traffic, and mixes of Web and FTP traffic
to evaluate the performance of SHRED versus RED and
Drop Tail routers.

Our analysis shows that SHRED produces lower ob-
ject transmission times than either RED or Drop Tail in
both Web-only and mixed traffic environments. SHRED
provides over 40 percent improvement in Web response
times over Drop Tail for Web-only traffic and between
70 and 300 percent improvement in Web response times
over Drop Tail. Moreover the Web traffic performance
improvements are achieved without negatively impact-
ing long-lived FTP traffic.

In contrast to results reported in [3] that show little
improvement for RED over Drop Tail in Web-only traffic

experiments, the mixed traffic simulations here indicate
that RED consistently outperforms Drop Tail.

Although SHRED is based on RED, the core princi-
pal of SHRED (a cwnd edge hint combined with drop
preference by a router) can be applied to most other
AQM approaches. One possible extension to SHRED
is to incorporate an indicator in the cwnd hint when a
flow is nearly finished and to avoid dropping the last
few packets of a transfer.

References
[1] M. Allman. A Web Server’s View of the Trans-

port Layer. ACM Computer Communication Re-
view, 30(4), Oct. 2000.

[2] Carey Williamson and Qian Wu. A Case for
Context-Aware TCP/IP. ACM Performance Eval-
uation Review, 29(4):11 — 23, Mar. 2002.

[3] M. Christiansen, K. Jeffay, D. Ott, and F. Smith.
Tuning RED for Web Traffic. In Proceedings of
ACM SIGCOMM Conference, Aug. 2000.

[4] C. Diot, G. Iannaccone, and M. May. Aggregate
Traffic Performance with Active Queue Manage-
ment and Drop from Tail. Technical Report TRO1-
ATL-012501, Sprint ATL, Jan. 2001.

[5] S. Floyd, R. Gummadi, and S. Shenker. Adaptive
RED: An Algorithm for Increasing the Robustness
of RED, 2001.

[6] S. Floyd and V. Jacobson. Random Early
Detection Gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, Aug.
1993.

[7] L. Guo and I. Matta. The War Between Mice and
Elephants. In Proceedings of the 9th IEEE Interna-
tional Conference on Network Protocols, Nov. 2001.

[8] J. Hall, I. Pratt, I. Leslie, and A. Moore. The Ef-
fect of Early Packet Loss on Web Page Download
Times. In The Passive and Active Measurement
Workshop, Apr. 2003.

[9] M. Hartling, M. Claypool, and R. Kinicki. Active
Queue Management for Web Traffic. Technical Re-
port WPI-CS-TR-02-20, CS Department, Worces-
ter Polytechnic Institute, May 2002.

[10] F. Hernandez-Campos, K. Jeffay, and F. Smith.
Tracing the Evolution of the Web Traffic: 1995-
2003. In Proceedings of the 11th IEEE/ACM In-
ternational Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication

Systems (MASCOTS), Oct. 2003.

[11] G. Iannaccone, M. May, and C. Diot. Aggregate
Traffic Performance with Active Queue Manage-
ment and Drop from Tail. ACM Computer Com-
munication Review, July 2001.

[12] R. Jain. The Art of Computer Systems Per-
formance Analysis: Techniques for FEzperimental
Design, Measurement, Simulation, and Modeling.
John Wiley and Sons, Inc., 1991.

[13] k claffy, G. Miller, and K. Thompson. the nature
of the beast: recent traffic measurements from an
internet backbone. In Proceedings of ISOC INET
’98, July 1998.

[14] B. Krishnamurthy and C. E. Wills. Analyzing
Factors that Influence End-to-End Web Perfor-
mance. WWW9 / Computer Networks, 33(1-6):17—
32, 2000.

[15] B. A. Mah. An Empirical Model of HTTP Network
Traffic. In Proceedings of INFOCOM, pages 592—
600, Apr. 1997.

[16] R.Fielding, H. Frystyck, and T. Berners-Lee. Hy-
pertext transfer protocol — http/1.1. IETF Request
for Comments (RFC) 2616, June 1999.

[17] Shanchieh Jay Yang and Gustavo de Veciana. Size-
based Adaptive Bandwidth Allocation: Optimizing
the Average QoS for Elastic Flows. In Proceedings
of IEEE INFOCOM, June 2002.

[18] I. Stoica, S. Shenker, and H. Zhang. Core-
Stateless Fair Queueing: Achieving Approximately
Fair Bandwidth Allocations in High Speed Net-
works. In Proceedings of ACM SIGCOMM Con-
ference, Sept. 1998.

[19] Wael Noureddine and Fouad Tobagi. Improving
the performance of interactive tcp applications us-
ing service differentiation. In Proceedings of IEEE
INFOCOM, June 2002.

[20] X. Wu and I Nikolaidis. On the Advantages
of Lifetime and RTT Classification Schemes for
TCP Flows. In Proceedings of IEEE 2003 Inter-

national Performance, Computing, and Communi-
cations Conference (IPCCC), Apr. 2003.

