
The Effects of a Performance Enhancing Proxy on

TCP Congestion Control over a Satellite Network

Mingxi Liu∗, Yongcheng Liu∗, Zhifei Ma∗, Zachary Porter∗, Jae Chung†,

Saahil Claypool∗, Feng Li†, Jacob Tutlis∗, Mark Claypool∗

∗ Worcester Polytechnic Institute, Worcester, MA, USA

email: mliu4, yliu31, zma4, zaporter, smclaypool, jtutlis, claypool @wpi.edu
† Viasat, Marlboro, MA, USA

email: jaewon.chung, feng.li @viasat.com

Abstract—Satellite networks often use Performance Enhancing
Proxies (PEPs) in order to overcome the inherent high latencies
that are detrimental to TCP throughputs. Measurements of TCP
performance over Satellite PEPs are lacking, both for actual PEP
benefits and for interactions between PEPs and TCP congestion
control algorithms. This paper presents results from experiments
that assess the benefits of a PEP for a commercial satellite
network, considering four TCP congestion control algorithms:
Cubic, BBR, Hybla and PCC. Without the PEP, the four
algorithms have similar steady state throughputs (about 70 Mb/s),
but significant differences in start-up throughputs. In particular,
the PEP dramatically improves (3x) start-up throughputs for
TCP Cubic – the default congestion control algorithm used by
most Internet servers. Overall, the PEP equalizes performance
irrespective of the TCP congestion control algorithm chosen.

Index Terms—PEP, throughput, round-trip time, retransmis-
sion

I. INTRODUCTION

Satellite networks are an essential part of modern net-

work infrastructures, providing ubiquitous network connec-

tivity even in times of disaster. The number of satellites in

orbit is over 2100, a 67% increase from 2014 to 2019 [2].

As few as three geosynchronous (GSO) satellites can provide

global coverage, interconnecting widely distributed networks

and providing “last mile” connectivity to remote hosts. The

idea of “always on” connectivity is particularly useful for

redundancy, especially in an emergency when traditional (i.e.,

wired) connections may not be available. Recent research in

satellite technology has produced spot beam frequency reuse

to increase transmission capacities more than 20-fold, and the

total capacity of planned GSO satellites is over 5 Tb/s.

While throughput gains for satellite Internet are promising,

satellite latencies remain an issue. GSO satellites orbit about

22k miles above the earth, so the physics for communication

between terrestrial hosts using a satellite means about a 550

millisecond round-trip time at a minimum [8] – a chal-

lenge for TCP-based protocols that rely upon round-trip time

communication to advance their data windows. To mitigate

these latencies that can limit TCP throughput, many satellite

operators use middle-boxes, typically known as “performance

enhancing proxies” (or PEPs), to short-circuit the round-trip

time communication to the satellite. As depicted in Figure 1,

with a satellite PEP, the end-to-end TCP connection is split

into 3 separate TCP connections, with the leg that traverses

the satellite connection (TCP 2) tuned for high latency. The

end system hosts use standard, unmodified TCP (TCP 1 and

TCP 3) and do not necessarily even know that a PEP has split

the connection. Without the PEP, the end hosts (servers and

client) communicate as normal, with a single, unbroken TCP

connection.

Fig. 1: TCP over a satellite with and without a performance

enhancing proxy.

In addition to the presence (or absence) of a PEP, TCP

congestion control algorithms play a critical role in enhancing

or restricting throughput in the presence of network loss and

latency. TCP Cubic [16] is the default TCP congestion control

algorithm in Linux and Microsoft Windows, but BBR [19]

has been widely deployed by Google on Linux servers and is

a congestion control option available in the QUIC transport

protocol [6], as well. A better understanding of TCP con-

gestion control algorithm performance over satellite networks

with and without a PEP is needed in order assess challenges

and opportunities that satellites have to better support TCP

moving forward.

However, while the types and prevalence of PEPs on the

Internet has been explored [26], as has PEP performance for

mobile networks [17], [27], satellite PEP studies have been

limited to Web caches only [14]. TCP Cubic and TCP BBR

measurements have been done over wireless networks [18],

but there are few published studies measuring network perfor-

mance over actual satellite networks [20], with most studies



either using just simulation [3] or emulation with satellite

parameters [1], [12], [24], [25], or with a satellite but without

assessing a PEP [9], [23].

This paper presents results from experiments that measure

the impact of a performance enhancing proxy in a commercial

satellite Internet network, considering the interaction effects

with the TCP congestion control algorithm. We compare

the effects of a PEP for four TCP algorithms with dif-

ferent approaches to congestion control: default loss-based

(Cubic [16]), bandwidth estimation-based (BBR [19]), utility

function-based (PCC [12]), and satellite-optimized for start-up

(Hybla [4]). The network testbed and experiments are done

over the Internet for ecological validity, but designed to be

as comparable across runs as possible by interlacing runs of

each protocol serially to minimize temporal differences and by

doing 80 bulk download runs over 24 hours for each protocol

to provide for a large sample.

Analysis of the results shows the PEP improves performance

on average for all protocols, with rather small effects on steady

state throughput but pronounced benefits to TCP start-up. In

particular, TCP Cubic, the default congestion control algorithm

for most Internet servers, gets about a 3x boost to start-up

performance from the PEP with a more modest (less than 1%)

boost to steady state throughput. With the PEP, performance

is about the same regardless of the type of TCP congestion

control algorithm.

The rest of this report is organized as follows: Section II

gives an overview of research related to this work, Section III

describes our testbed and experimental methodology, Sec-

tion IV analyzes our experiment data, and Section V sum-

marizes our conclusions and suggests possible future work.

II. RELATED WORK

This section describes work related to our paper, including

performance enhancing proxies (PEPs) (Section II-A), TCP

congestion control algorithms (Section II-B), and TCP perfor-

mance over satellite networks (Section II-C).

A. Performance Enhancing Proxies

Ehsan et al. [14] evaluate the benefits to performance for

a satellite Internet network using a Web cache PEP based on

log analysis. They show performances gains from the PEP

are sensitive to the amount of packet loss but do not explore

benefits of the PEP for high latency.

Ivanovich et al. [17] present results from a PEP that seeks

to mitigate the negative effects of wireless packet loss on TCP

performance. Results simulating their proxy over 3G networks

shows some improvements to TCP throughputs for 1%, 2%

and 3% packet error rates.

Xu et al. [27] assess the behavior of transparent Web proxies

(a type of PEP) in U.S. mobile networks, describing different

types of PEPs based on how they handle Web content. They

find split connection proxies, such as those studied in our

paper, do not necessarily enhance performance, instead only

having noticeable benefits with large flows and/or high link

loss.

Weaver et al. [26] detect PEPs based on Netalyzr logs,

identifying proxy locations and their intended use. They find

14% of Netalyzer-analyzed clients hint at the presence of Web

proxies. They do not, however, assess the effects of the PEPs

on performance.

Pavur et al. [22] design and implement QPEP, an open-

source PEP/VPN hybrid based on the QUIC standard that has

the potential to encrypt all traffic over a satellite link. Their

experiments show QPEP provides up to 72% faster page load

times compared to traditional VPN encryption.

While helpful to understand the scope of PEP features

and use and effects PEPs have with packet loss, the above

papers do not focus on mitigating the effects of latency nor

do they explore any interactions with TCP congestion control

algorithms – in fact, some of the congestion control algorithms

we study did not exist at the time of this previous work. Our

paper seeks to start remedying these shortcomings.

B. TCP Congestion Control (CC)

There have been numerous proposals for improvements

to TCP’s congestion control algorithm since its inception.

Those most relevant to our work are highlighted here, in

chronological order.

Caini and Firrinielli [4] propose TCP Hybla to overcome

the limitations TCP NewReno flows have when running over

high latency links (e.g., a Satellite). TCP Hybla modifies the

standard congestion window increase with an extension based

on the round-trip time. In Hybla slow start, cwnd = cwnd+

2ρ − 1 and in congestion avoidance, cwnd = cwnd +
ρ2

cwnd
,

where ρ = RTT/RTT0. RTT0 is fixed at a “wired” round-

trip time of 0.025 seconds. Hybla is available for Linux as of

kernel 2.6.11 (in 2005).

Ha et al. [16] develop TCP Cubic as an incremental im-

provement to earlier congestion control algorithms. Cubic is

less aggressive than previous TCP congestion control algo-

rithms in most steady state cases, but can probe for more

bandwidth quickly when needed. TCP Cubic has been the

default in Linux as of kernel 2.6.19 (in 2007), Windows

10.1709 Fall Creators Update (in 2017), and Windows Server

2016 1709 update (in 2017).

Dong et al. [12] propose TCP PCC that observes per-

formance based on small measurement “experiments”. The

experiments assess throughput, loss, and round-trip times with

a utility function, adopting the rate that has the best utility.

PCC is not generally available for Linux, but Compira Labs1

provided us with a Linux-based implementation.

Cardwell et al. [19] provide TCP Bottleneck Bandwidth

and Round-trip time (BBR) as an alternative to Cubic’s

(and Hybla’s) loss-based congestion control. BBR uses the

maximum bandwidth and minimum round-trip time observed

to set the congestion window size (up to twice the bandwidth-

delay product). BBR has been deployed by Google servers

since at least 2017 and is available for Linux as of kernel 4.9

(end of 2016).

1https://www.compiralabs.com/



C. TCP over Satellite Networks

Obata et al. [20] evaluate TCP performance over actual (not

emulated, as is typical) satellite networks. They compare a

satellite-oriented TCP congestion control algorithm (STAR)

with NewReno and Hybla. Experiments with the Wideband

InterNetworking Engineering test and Demonstration Satellite

(WINDS) network show throughputs around 26 Mb/s and

round-trip times around 860 milliseconds. Both TCP STAR

and TCP Hybla have better throughputs over the satellite link

than TCP NewReno. We evaluate TCP Hybla, but there is no

public Linux implementation of TCP STAR available.

Wang et al. [25] provide preliminary performance evalu-

ation of QUIC with BBR on an emulated satellite network

(capacities 1 Mb/s and 10 Mb/s, RTTs 200, 400 and 1000 ms,

and packet loss rates up to 20%). Their results confirm QUIC

with BBR has throughput improvements compared with Cubic

for their emulated satellite network.

Utsumi et al. [24] develop an analytic model for TCP Hybla

for steady state throughput and round-trip time over satellite

links. They verify the accuracy of their model with simulated

and emulated satellite links (capacity 8 Mb/s, RTT 550 ms,

and packet loss rates up to 2%). Their analysis shows TCP

Hybla has substantial improvements to throughput over that

of TCP Reno for loss rates above 0.0001%

Cao et al. [5] analyze measurement results of TCP BBR and

TCP Cubic over a range of different network conditions. They

produce heat maps and a decision tree that identifies condi-

tions which show performance benefits for using BBR over

using Cubic. They find it is the relative difference between

the bottleneck buffer size and bandwidth-delay product that

dictates when BBR performs well.

Claypool et al. [9] provide comparative performance for

TCP congestion control algorithms on a commercial satellite

Internet network. Analysis shows similar steady state bitrates

for all algorithms, but with significant differences in start-up

throughputs and round-trip times caused by queuing of packets

in flight. Unlike our paper, all their experiments are without a

PEP.

Our current work extends the above work by using a

commercial satellite network, not simulation, considering four

TCP congestion control algorithms, not one or two, and di-

rectly assessing the impact of a split-connection, performance

enhancing proxy (PEP).

III. METHODOLOGY

To evaluate TCP congestion control over a satellite link

with and without a performance enhancing proxy (PEP), we

setup a testbed (Section III-A), serially bulk-download data

using different TCP congestion control algorithms with the

PEP either on or off (Section III-B), and analyze the results

(Section IV).

A. Testbed

We setup a Viasat2 satellite Internet link so as to represent

download to a client with a “last mile” satellite connection.

2https://www.viasat.com/internet

Our servers are configured to allow for repeated tests and

comparative performance by using consecutive serial runs with

all conditions the same except for: 1) the PEP on/off, and 2)

the TCP congestion control algorithm.

Our testbed is depicted in Figure 1. The client is a Linux PC

with an Intel i7-1065G7 CPU @ 1.30GHz and 32 GB RAM.

There are four servers, each with a different TCP congestion

control algorithm: Cubic, BBR, Hybla and PCC. Each server

has an Intel Ken E312xx CPU @ 2.5 GHz and 32 GB RAM.

The servers and client all run Ubuntu 18.04.4 LTS, Linux

kernel version 4.15.0.

The servers connect to our University LAN via Gb/s

Ethernet. The campus network is connected to the Internet

via several 10 Gb/s links, all throttled to 1 Gb/s. Wireshark

captures all packet header data on each server and the client.

The client connects to a Viasat satellite terminal (with a dish

and modem) via a Gb/s Ethernet connection. The client’s

downstream Viasat service plan provides a peak data rate of

144 Mb/s.

The terminal communicates through a Ka-band outdoor

antenna (RF amplifier, up/down converter, reflector and feed)

through the Viasat 2 satellite3 to the larger Ka-band gateway

antenna. The terminal supports adaptive coding and modula-

tion using 16-APK, 8 PSK, and QPSK (forward) at 10 to 52

MSym/s and 8PSK, QPSK and BPSK (return) at 0.625 to 20

MSym/s.

The Viasat gateway performs per-client queue management,

where the queue for each client can grow up to 36 MBytes,

allowing a maximum queuing delay of about 2 seconds at the

peak data rate. Queue lengths are controlled at the gateway by

Active Queue Management (AQM) that randomly drops 25%

of incoming packets when the queue is over half of the limit

(i.e., 18 MBytes).

Previous work [9] assessed link baseline (i.e., without any

induced traffic) performance and shows the vast majority

(99%) of round-trip times are from 560 and 625 milliseconds,

and average loss rates are about 0.05%, with most of these

(77%) single-packet losses.

Given the minimum satellite round-trip times and the peak

data rate, the bandwidth-delay product (BDP) of our satellite

link is approximately 140 Mb/sec × 0.6 sec = 10.5 MBytes.

The PEP (the Viasat Web Accelerator) can be enabled (on)

or disabled (off) at the terminal. When enabled, TCP flows

from server to client are transparently (to the client and server)

split into 3 legs – server to gateway (TCP 3), gateway to

terminal (TCP 2), and terminal to client (TCP 1). In contrast,

when the PEP is disabled (off), there is a single TCP flow

from the server to the client.

B. Downloads

We compare the performance of four congestion control

algorithms, chosen as representatives of different conges-

tion control approaches: loss-based Cubic; bandwidth-delay

product-based BBR (version 1); utility function-based PCC;

3https://en.wikipedia.org/wiki/ViaSat-2



(a) Performance enhancing proxy off. (b) Performance enhancing proxy on.

Fig. 2: Overall throughput distributions for 10%, 50%, 90% and mean.

and satellite-optimized, loss-based Hybla. The four servers

are configured to provide for bulk-downloads via iperf34

(v3.3.1), each server hosting one of our four congestion control

algorithms. Cubic, BBR and Hybla are used without further

configuration. PCC is configured to use the Vivace-Latency

utility function [13], with throughput, loss, and round-trip time

coefficients set to 1, 10, and 2, respectively.

For all hosts, the default TCP buffer settings are changed

on both the server and client – setting tcp_mem, tcp_wmem

and tcp_rmem to 60 MBytes – so that the downloads are not

flow-controlled and instead are governed by TCP’s congestion

window [23].

The client turns the PEP on, initiates a connection to one

server via iperf, downloads 1 GByte, then does a repeat but

with the PEP off. After the two downloads (one with the PEP

on, one with the PEP off), the client proceeds to the next

server (i.e., to another congestion control algorithm). After

cycling through each of the four servers, the client pauses

for 1 minute. The process repeats a total of 40 times – thus,

providing 80 network traces of a 1 GByte download for each

protocol over the satellite link, half with the PEP on and half

with the PEP off. Since each cycle takes about 15 minutes, the

throughput tests run for about a day total. We analyze results

for a weekday.

IV. ANALYSIS

A. Overall

The throughput for each download is computed from the

Wireshark traces on the downlink from the server. Figure 2

depicts the overall throughput boxplot distributions at different

percentiles taken across all flows and grouped by protocol.

PEP off results are in Figure 3a and PEP on results in

Figure 3b. For both graphs, the top left is the tenth percentile,

the top right the 50% (or median), the bottom left the ninetieth

percentile and the bottom right the mean. Each box depicts

quartiles and median for the distribution. Points higher or

4https://software.es.net/iperf/

lower than 1.4 × the inter-quartile range are outliers, depicted

by the circles. The whiskers span from the minimum non-

outlier to the maximum non-outlier.

For the PEP on versus the PEP off, the biggest visual dif-

ference is in the tenth percentile with the PEP-on throughputs

being near 50 Mb/s while the PEP-off throughputs are 1/4 to

1/2 as much, except for Hybla which appears similar in both.

For the median, ninetieth percentile and mean, the PEP-on/off

results look similar. When the PEP is on, all protocols have

visually similar throughput distributions at each percentile

and for the mean. When the PEP is off, Cubic, BBR and

Hybla have visually similar throughput distributions at the

median, ninetieth percentile and mean, while PCC has lower

throughput distributions in all cases.

B. Steady State

TCP’s overall performance includes both start-up and con-

gestion avoidance phases – the latter we call “steady state”.

We analyze steady state behavior based on the last half (in

terms of bytes) of each trace.

Figure 3 shows the boxplot distributions for the mean

throughputs for each protocol, PEP-off in Figure 3a and PEP-

on in Figure 3b. The boxes and whiskers are the same as in

Figure 3. Comparing Figure 3a to Figure 3b, the steady state

distributions with the PEP off are similar to those with the

PEP on, with the latter slightly shifted upwards – i.e., q1 and

q3 are higher with the PEP on for all protocols. The median

is similarly higher for all, with the exception of Cubic.

C. Start-Up

We compare the start-up behavior for each protocol by

analyzing the first 30 seconds of each trace, approximately

long enough to download 50 MBytes on our satellite link.

This is indicative of algorithm performance for some short-

lived flows and is about when we observed throughput growth

over time “flattening” for most flows.

The average Web page size for the top 1000 sites was around

2 MBytes as of 2018 [11], including HTML payloads and all



(a) Performance enhancing proxy off. (b) Performance enhancing proxy on.

Fig. 3: Steady state mean throughput distributions.

(a) Performance enhancing proxy off. (b) Performance enhancing proxy on.

Fig. 4: Download time versus download object size.

linked resources (e.g., CSS files and images). The Web page

size distribution’s 95th percentile was about 6 MBytes and

the maximum was about 29 MBytes. Today’s average total

Web page size is probably about 5 MBytes [15], dominated

by images and video.

Many TCP flows stream video content and the amount

streamed depends upon the video encoding. However, assum-

ing videos are downloaded completely, about 90% of YouTube

videos are less than 30 MBytes [7].

Figure 4 depicts the time on the y-axis (in seconds) to

download an object for the given size on the x-axis (in

MBytes), PEP-off in Figure 4a and PEP-on in Figure 4b. The

object size increment is 1 MByte. Each point is the mean time

required by a protocol to download an object of the indicated

size, shown with a 95% confidence interval.

Comparing PEP-off (Figure 4a) to PEP-on (Figure 4b), the

PEP has a dramatic benefit to download times for PCC and

Cubic, decreasing times by about 3x, but with less impact

on BBR and Hybla. In fact, with the PEP on, the start-

up performance for all protocols is about the same. With

the PEP off, for the smallest objects (1 MByte), Hybla and

BBR download the fastest, about 4 seconds, PCC about 6

seconds and Cubic about 9.5 seconds. For an average Web

page download (5 MBytes), Hybla and BBR take an average

of about 5 seconds, PCC 11 seconds, and Cubic 13 seconds.

For 90% of all videos and the largest Web pages (30 MBytes),

Hybla and BBR take about 8 seconds, Cubic about twice that

and PCC about thrice. With the PEP on, for all protocols, the

average Web page download takes about 5 seconds and 90%

of all video downloads and the largest Web page downloads

take about 8 seconds.

D. Summary

Table I shows summary statistics (mean µ, standard de-

viation s) for the throughput differences for the PEP on

and the PEP off. Positive values indicate the protocol had

a higher bitrate with the PEP on. The table also shows the

computed effect sizes. An effect size provides a measure of

the magnitude of difference – in our case, the difference of

the means with the PEP on versus the PEP off. In short, the

effect size quantifies how much having the PEP on matters.

The Glass’ ∆ effect size assesses the differences in means in



relation to the standard deviation of the control group (here,

the PEP off). Generally small effect sizes are anything under

0.2, medium are 0.2 to 0.5, large (shown with italics) 0.5 to

0.8, and very large (shown with bold) above 0.8.

TABLE I: Throughput summary statistics (in Mb/s) for mean

(µ), standard deviation (s) and effect size (∆). Values are

differences with the PEP on and the PEP off – positive values

indicate the protocol had a higher bitrate with the PEP on.

Overall Steady State Start-up

µ s ∆ µ s ∆ µ s ∆

Cubic 10.8 16.4 0.7 0.8 17.5 0.0 24.6 7.4 3.4

BBR 10.1 9.5 1.0 11.0 13.8 0.8 7.4 6.5 1.1

Hybla -1.0 9.6 0.1 -2.6 20.0 0.1 5.1 4.5 1.0

PCC 27.6 25.5 1.4 12.9 31.0 0.4 26.2 6.6 4.3

From the table, overall, the PEP provides the greatest benefit

to PCC with a large effect. The throughput benefit to BBR is

about the same as that to Cubic, but the effect is larger for

BBR owing to BBR’s lower standard deviation. The PEP has

little effect on Hybla. At steady state, the effects of the PEP are

smaller for most protocols, save BBR which benefits with a

medium effect – likely because the PEP avoids the low bitrates

caused when BBR probes for the minimum round-trip time for

several seconds. At start-up, the benefits of the PEP are very

large for all protocols, particularly so for Cubic and PCC.

E. Comparison to Related Work

We provide a high-level comparison of our results to some

previously published results. Since a direct comparison is not

possible as the studies cover different network conditions and

protocol versions – one of the merits of our work is results

for a previously untested set of network conditions – we

examine the closest experimental conditions reported in each

paper to those in our work: A) network link with about a 600

ms round-trip time, 140 Mb/s capacity, minimal loss, and a

bottleneck queue of about 2x BDP, and B) comparisons of

congestion control algorithm to Cubic. Since the benefits for

a split connection PEP are primarily in reducing the round-

trip time during slow start, we examine the throughput during

start-up.

Table II depicts the results, broken into two parts: 1) PEP

comparison, showing the gains with PEP on versus PEP off,

and 2) Protocol comparison, showing the gains with alternative

protocols to Cubic – here, with the PEP off. “Capacity” and

“RTT” (round-trip time) are as specified in the paper and/or

based on measured values. “Gain” is the maximum throughput

benefit obtained from either the PEP or the alternate protocol.

“Notes” indicates key differences in the experiments. Previous

work indicates the bottleneck buffer size matters for BBR [5],

[10] and PCC [13] performance, so it is indicated where

applicable. For our work, the buffer size is about 1 BDP.

From the table, the gains in our experiments both from

the PEP and from Hybla and BBR are generally larger than

those reported in other works. This may be due to the larger

capacity on our satellite Internet link and the accompanying

TABLE II: Performance Comparison Summary

Paper Capacity RTT Gain Notes

PEP Comparison

PEP on vs. PEP off

Ehsan et al. [14] 24 Mb/s 500 ms 0.75x Satellite

Xu et al. [27] 1 Mb/s 200 ms 2x Mobile

Ours 140 Mb/s 600 ms 3x Gain depends on protocol

Protocol Comparison

BBR vs. Cubic

Wang et al. [25] 1 600 0.05x Emulation, Only QUIC

Cao et al. [5] 100 200 0.1x Emulation, 4 BDP buffer

Ours 140 600 3x

Hybla vs. Cubic

Caini et al. [4] 10 600 2x Emulation, vs. NewReno

Obata et al. [20] 42 800 0.1x Satellite, vs. NewReno

Ours 140 600 3x

PCC vs. Cubic

Dong et al [13] 42 800 20x Emulation, 0.25 BDP buffer

Ours 140 600 1.2x

with high round-trip times making the BDP larger than studied

in previous work. The notable exception to this gain is for

PCC, where the previous 20x gains from PCC compared to

our 1.2x gains are likely due to their small buffer size at the

bottleneck.

V. CONCLUSION

While satellite Internet connections are important for pro-

viding reliable connectivity, to date, there are few published

research papers measuring the benefits of a PEP in an actual

satellite network, in particular in combination with different

TCP congestion control algorithms. This paper presents results

from experiments on a production satellite network, comparing

the effects of a PEP on TCP considering four congestion

control algorithms – the two dominant algorithms, Cubic and

BBR, a commercial implementation of PCC, and the satellite-

tuned Hybla.

For overall throughput, the PEP benefits PCC the most

owing to PCC’s relatively low throughput with high link

round-trip times. The PEP has a large effect on Cubic and

BBR, improving average throughput by about 10 Mb/s for

each. The proxy has little effect on Hybla which is designed for

high round-trip times without a PEP. During steady state, the

PEP has much less benefit to all protocols since they benefit

little once congestion windows have grown large enough to

saturate the high round-trip time link. However, during start-

up, the benefits of the PEP are at least large for all protocols,

and very large for Cubic and PCC that are slow to ramp

up to the link capacity with the high link round-trip times.

Moreover, with the proxy, start-up performance is similar for

all protocols, with small downloads (e.g., Web pages) taking

about 5 seconds, about 3 times faster than a default Cubic flow

without a PEP.

The results pertain to geosynchronous satellite networks,

but should apply to other networks with high bandwidth-delay



products. The results may also be relevant to other satellite

networks, such as low earth orbit satellites [21], as these have

relatively lower latencies (about 50 ms) but potentially higher

bandwidth.

There are several areas we are keen to pursue as future work.

Settings to TCP, such as the initial congestion window, may

have a significant impact on performance, especially for small

object downloads [23]. Video streams using HTTP are also

of interest given their TCP dynamics and prevalence on many

network links. Since prior work has shown TCP BBR does

not always share a bottleneck network connection equitably

with TCP Cubic [10], future work is to run multiple flow

combinations over the satellite link with the PEP on and off.

Since encrypted flows cannot be split by a PEP, future work is

to evaluate the performance of implementations of QUIC [6]

on the satellite link.

ACKNOWLEDGMENTS

Thanks to Amit Cohen, Lev Gloukhenki and Michael Scha-

pira of Compira Labs for providing the implementation of

PCC.

REFERENCES

[1] V. Arun and H. Balakrishnan, “Copa: Practical Delay-Based Congestion
Control for the Internet,” in Proceedings of the Applied Networking

Research Workshop, Montreal, QC, Canada, Jul. 2018.
[2] S. I. Association, “Introduction to the Satellite Industry,” Online presen-

tation: https://tinyurl.com/y5m7z77e, 2020.
[3] C. Barakat, N. Chaher, W. Dabbous, and E. Altman, “Improving TCP/IP

over Geostationary Satellite Links,” in Proceedings of GLOBECOM, Rio
de Janeireo, Brazil,, Dec. 1999.

[4] C. Caini and R. Firrincieli, “TCP Hybla: a TCP Enhancement for Hetero-
geneous Networks,” International Journal of Satellite Communications

and Networking, vol. 22, no. 5, pp. 547–566, Sep. 2004.
[5] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi,

“When to Use and When not to Use BBR: An Empirical Analysis
and Evaluation Study,” in Proceedings of the Internet Measurement

Conference (IMC), Amsterdam, NL, Oct. 2019.
[6] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Jacobson, “BBR Conges-

tion Control,” IETF Draft draft-cardwell-iccrg-bbr-congestion-control-

00, Jul. 2017.
[7] X. Che, B. Ip, and L. Lin, “A Survey of Current YouTube Video

Characteristics,” IEEE Multimedia, vol. 22, no. 2, April - June 2015.
[8] Cisco, Interface and Hardware Component Configuration Guide, Cisco

IOS Release 15M&T. Cisco Systems, Inc., 2015, chapter: Rate Based
Satellite Control Protocol.

[9] S. Claypool, J. Chung, and M. Claypool, “Comparison of TCP Conges-
tion Control Performance over a Satellite Network,” in Proceedings of

the PAM Conference, Virtual Conference, Apr. 2021.
[10] S. Claypool, M. Claypool, J. Chung, and F. Li, “Sharing but not Caring -

Performance of TCP BBR and TCP CUBIC at the Network Bottleneck,”
in Proceedings of the 15th IARIA Advanced International Conference on

Telecommunications (AICT), Nice, France, Aug. 2019.

[11] Data and Analysis, “Webpages Are Getting Larger Every Year, and
Here’s Why it Matters,” Solar Winds Pingdom. Online at: https://tinyurl.
com/y4pjrvhl, November 15 2018.

[12] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting Congestion Control for Consistent High Performance,”
in Proceedings of the 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), Oakland, CA, USA, 2015.

[13] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “PCC Vivace: Online-Learning Congestion Control,” in
Proceedings of the 15th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), Renton, WA, USA, Apr. 2018.

[14] N. Ehsan, M. Liu, and R. Ragland, “Evaluation of Performance En-
hancing Proxies in Internet over Satellite,” International Journal of

Communication Systems, vol. 16, no. 6, 2003.
[15] T. Everts, “The Average Web Page is 3 MB. How Much Should We

Care?” Speed Matters Blog. Online at: https://speedcurve.com/blog/
web-performance-page-bloat/, August 9th 2017.

[16] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
2008.

[17] M. Ivanovich, P. Bickerdike, and J. Li, “On TCP Performance Enhancing
Proxies in a Wireless Environment,” IEEE Communications Magazine,
vol. 46, no. 9, Sep. 2008.

[18] F. Li, J. W. Chung, X. Jiang, and M. Claypool, “TCP CUBIC versus
BBR on the Highway,” in Proceedings of the PAM Conference, Berlin,
Germany, Mar. 2018.

[19] N. Cardwell and Y. Cheng and C. S. Gunn and S. H. Yeganeh and Van
Jacobson, “BBR: Congestion-based Congestion Control,” Communica-

tions of the ACM, vol. 60, no. 2, pp. 58–66, Jan. 2017.

[20] H. Obata, K. Tamehiro, and K. Ishida, “Experimental Evaluation of
TCP-STAR for Satellite Internet over WINDS,” in Proceedings of the

International Symposium on Autonomous Decentralized Systems, Tokyo,
Japan, Mar. 2011.

[21] C. H. Park, P. Austria, Y. Kim, and J.-Y. Jo, “MPTCP Performance Sim-
ulation in Multiple LEO Satellite Environment,” in IEEE Computing and

Communication Workshop and Conference (CCWC), Virtual Conference,
Jan. 2022.

[22] J. Pavur, M. Strohmeier, V. Lenders, and I. Martinovic, “QPEP: An
Actionable Approach to Secure and Performant Broadband from Geo-
stationary Orbit,” in Proceedings of the Network and Distributed System

Security Symposium (NDSS), San Diego, CA, USA, Feb. 2021.

[23] B. Peters, P. Zhao, J. W. Chung, and M. Claypool, “TCP HyStart
Performance over a Satellite Network,” in Proceedings of the 0x15

NetDev Conference, Virtual Conference, Jul. 2021.

[24] S. Utsumi, S. Muhammad, S. Zabir, Y. Usuki, S. Takeda, N. Shiratori,
Y. Katod, and J. Kimb, “A New Analytical Model of TCP Hybla for
Satellite IP Networks,” Journal of Network and Computer Applications,
vol. 124, Dec. 2018.

[25] Y. Wang, K. Zhao, W. Li, J. Fraire, Z. Sun, and Y. Fang, “Performance
Evaluation of QUIC with BBR in Satellite Internet,” in Proceedings

of the 6th IEEE International Conference on Wireless for Space and

Extreme Environments (WiSEE), Huntsville, AL, USA, Dec. 2018.

[26] N. Weaver, C. Kreibich, M. Dam, and V. Paxson, “Here Be Web
Proxies,” in Proceedings of PAM, Los Angeles, CA, USA, Mar. 2014.

[27] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govin-
dan, “Investigating Transparent Web Proxies in Cellular Networks,” in
Proceedings of the PAM Conference, New York, NY, USA, Mar. 2015.


