
Multimedia Systems Journal (MMSJ) – Network and Systems Support for Games

On the Performance of OnLive Thin Client Games

Mark Claypool · David Finkel · Alexander Grant · Michael Solano

Received: October 4, 2013

Abstract Computer games stand to benefit from “cloud”
technology by doing heavy-weight, graphics-intensive

computations at the server, sending only the visual game

frames down to a thin client, with the client sending

only the player actions upstream to the server. How-

ever, computer games tend to be graphically intense
with fast-paced user actions necessitating bitrates and

update frequencies that may stress end-host networks.

Understanding the traffic characteristics of thin client

games is important for building traffic models and traf-
fic classifiers, as well as adequately planning network in-

frastructures to meet future demand. While there have

been numerous studies detailing online game traffic and

streaming video traffic, this paper provides the first de-

tailed study of the network characteristic of OnLive, a
commercially available thin client game system. Care-

fully designed experiments measure OnLive game traffic

for several game genres, analyzing the bitrates, packet

sizes and inter-packet times for both upstream and down-
stream game traffic, and analyzing frame rates for the

games. Results indicate OnLive rapidly sends large pack-

ets downstream, similar but still significantly different

than live video. Upstream, OnLive less frequently sends

much smaller packets, significantly different than up-
stream traditional game client traffic. OnLive supports

only the top frame rates with high capacity end-host

connections, but provides good frame rates with moder-

ate end-host connections. The results should be a useful
beginning to building effective traffic models and traf-

fic classifiers, and for preparing end-host networks to

support this upcoming generation of computer games.

Computer Science and Interactive Media & Game Develop-
ment
Worcester Polytechnic Institute
Worcester, MA 01609, USA
email: {claypool,dfinkel}@cs.wpi.edu

1 Introduction

The computer game industry has seen tremendous growth

in recent years, and is forecasted to be over a $100 bil-

lion industry by 2015 [3], on par with the U.S. movie

industry revenue worldwide (DVD and film).1 Online
games have also seen considerable growth, spurred on

by the growth in residential broadband Internet connec-

tions with high capacities and low latencies that have

encouraged game developers to incorporate networked
features into their products.

Thin clients, where the local computer is primar-

ily an input and output device and the remote com-
puter does the majority of the processing, have seen

a resurgence in use because today’s network capacities

and latencies can support bandwidth-intensive, client-

server interactions. Thin clients are expected to grow
from over 12 million units shipped in 2011 to over 25

million in 2013, and by 2014, 15% of traditional pro-

fessional desktop PCs are projected to be replaced by

virtual desktops accessed from thin clients [3]. Using

thin clients for games has already become commercial,
with companies such as OnLive2 and GameNow3 hav-

ing commercial success and continuing to expand.

In order to classify network traffic and adequately

plan network infrastructures, it is important for engi-

neers to have knowledge of the network load caused by

emerging end-host applications and devices. For tradi-
tional network games, traffic from a number of popular

games has been characterized to provide suitable traffic

models for testing existing or planned network designs.

1 “How Much Does Hollywood Earn?”, Information is
Beautiful, http://www.informationisbeautiful.net/2012/

how-much-does-hollywood-earn/
2 http://www.onlive.com/
3 http://www.ugamenow.com/

2 Mark Claypool et al.

There have been numerous studies of traffic models for

popular PC games [4,7,15,22,23] and even game con-

soles [32]. There have also been studies of traditional

video, both pre-recorded [17,33] and live [24,30]. How-

ever, to the best of our knowledge, measurements of
thin clients across games with comparisons to tradi-

tional games and streaming video have not been done.

Using network sniffing to capture OnLive traffic,

this paper investigates the network characteristics (the
size and frequency of data sent and the overall bitrate),

which we call turbulence.4 Additional analysis is pro-

vided on the frame rate achieved by OnLive over a va-

riety of network conditions. This study seeks to answer

the following questions (with a brief answer as revealed
by this study provided in parentheses):

1. What is the network turbulence for OnLive games?
Characterizing the data rates, packet sizes and inter-

packet times for OnLive games is a critical first step

for building accurate game traffic models and traffic

classifiers. (Answer: OnLive games have high down-
stream bitrates, about 5 Mb/s with 1000 byte pack-

ets, with much more moderate upstream bitrates,

about 100 Kb/s with 150 byte packets.)

2. Does the network turbulence for different game gen-

res (such as first-person vs. omnipresent) differ from
each other? If the answer is no, then research efforts

can study traffic on one game genre only, saving

hardware costs and time. However, previous work

has shown that different game genres have different
amounts of visual motion and scene complexity [10].

(Answer: The characteristics of game traffic is simi-

lar for all genres, but total bitrates for downstream

and upstream traffic can vary by as much as 50%

across genres.)
3. Does the network turbulence for OnLive games dif-

fer from traditional games? If the answer is no, then

mature, previously developed models for online games

can be used to analyze the impact of thin client
games. (Answer: OnLive downstream traffic is more

similar to downstream live video than traditional

games, while upstream traffic is only somewhat sim-

ilar to upstream game traffic.)

4. Does the network turbulence for OnLive change with
different network conditions (such as packet loss or

capacity limits)? If the answer is no, then this sug-

gests OnLive is not adaptive to network conditions,

making it easier to model but with more poten-
tial to disrupt networks, while if yes, then further

studies are needed to ascertain how, exactly, On-

Live adapts to the network. (Answer: OnLive does

4 The term “footprint” typically refers to the memory size
of a software process. In a network, the size and distribution of
packets over time is important, hence our word “turbulence.”

adapt bitrates to capacity limits, but does not adapt

bitrates to loss or latency. OnLive is clearly not

TCP-friendly in many cases, having bitrates much

higher than conformant TCP flows under conditions

of modest loss and latency.)
5. Do OnLive frame rates change in response to net-

work conditions? Frame rates have been shown to

have a marked effect on player performance for games

[9,11], so understanding frame rates during network
perturbations can help predict player satisfaction

with thin client games. (Answer: OnLive frame rates

adapt to both capacity limits and loss, but not la-

tency. Frame rates become unacceptable at the min-

imum recommended capacities and only provide max-
imum player performance when capacities are above

the recommended limits.)

While the core network turbulence results appeared
in an earlier paper [14], this paper extends that work

significantly with: 1) an in-depth analysis of OnLive

frame rates in the presence of network perturbations, 2)

a prediction of player performance based on latency and
frame rate, 3) analysis of OnLive bitrates over a broad

range of packet loss and latencies, and 4) a comparison

of OnLive bitrates to TCP-friendly bitrates over the

same ranges.

The rest of this paper is organized as follows: Sec-
tion 2 provides related work on measuring performance

of thin clients; Section 3 describes our measurement

setup and methodology; Section 4 analyzes our results

in relation to the questions posed above; and Section 5
summarizes our conclusions and presents possible fu-

ture work.

2 Related Work

This work overlaps and builds upon research from two

main areas: work measuring the performance of thin

clients (Section 2.1) and work specific to thin client

games (Section 2.2).

2.1 Performance of Thin Clients

Lai and Nieh [21] use a novel, slow-motion benchmark-

ing technique to evaluate the performance of several

thin client platforms. Their measurements include anal-
ysis of network traffic, where bitrates can vary across

platforms by ten-fold for the same tasks. Bitrates for

displaying video across thin clients varies from about 1

Mb/s to over 40 Mb/s for some platforms. They show
general performance is often adequate for high capacity

links, even when running across the entire U.S. How-

ever, thin clients with more efficient bitrates can still

On the Performance of OnLive Thin Client Games 3

have latency as the bottleneck to performance. They

provide a summary of design choices that can aid thin

client computing development for traditional applica-

tions.

Packard and Gettys [26] passively monitor network
traffic between X clients and X servers under network

capacity controlled conditions. A variety of test applica-

tions assess a shallow understanding and quantification

of performance issues. Among other findings, latency
was found to dominate capacity in limiting performance

for some applications and image transfers were found

to dominate the overall network capacity used.

Billinghurst et al. [2] describe communication asym-
metries for a wearable (and thin) display and a desktop

computer. An accompanying user study attempts to de-

termine the effects on collaboration, showing that the

extent to which communication over a thin client is dif-

ficult largely depends upon the task being undertaken.

Kim et al. [19] describe pTHINC, a thin-client so-

lution for PDAs that runs applications such as Web

browsers on more powerful, but remote, servers. With

pTHINC, server-side scaling of the display provides im-
proved performance for a variety of heterogeneous client

displays. The results show pTHINC provides superior

Web browsing performance for a PDA.

The above studies provide detailed insights into thin

client performance, but predominantly pertain to tra-
ditional applications with no study specifically focusing

on thin clients and games.

2.2 Games on Thin Clients

De Winter et al. [29] propose a thin client system de-

signed specifically for streaming and interactive games.

Their system streams screen images after rendering by

the graphics card, thus reducing bitrates and increasing
visual quality for streaming video games.

Chen et al. [8] study the performance of OnLive by

comparing it to another cloud gaming platform called

StreamMyGame. Unlike OnLive which has a service
provided by OnLive, StreamMyGame is a software so-

lution that is managed and operated by the researchers

themselves, allowing for greater control of system pa-

rameters but with perhaps less generality.

Chang et al. [6] also propose a methodology for
studying thin client game systems based on the game

as displayed on the server compared to the game as dis-

played on the client, quantifying frame rate and frame

distortion. Similar to work on traditional client-server
games [13], the authors find that frame rate is more

critical to gameplay than frame distortion. The authors

apply their methodology to Ms. Pac-Man for three thin

client systems, LogMeIn, TeamViewer, and UltraVNC,

and find frame-based metrics correlate well with game

performance, and that the thin client implementations

have different amounts of robustness against network

impairments.

Our work complements these approaches by provid-
ing insight into the characteristics of streaming video

games, enabling better scaling decisions for the streamed

images after rendering, as well as evaluating a commer-

cially successful thin client technology with several rep-
resentative games.

3 Methodology

To measure the turbulence and performance of OnLive,

the following methodology was used:

– Select games to play on OnLive (Section 3.1).

– Setup testbed to measure network turbulence and

frame rates (Section 3.2).

– Run experiments, gathering network statistics and
performance data (Section 3.3).

– Analyze data (Section 4).

3.1 Game Selection

In order to ascertain if turbulence for OnLive varies

with the type of game, representative games from three
different genres were selected. Following the game clas-

sification described in [12], games were chosen from

each dominant genre: first person avatar, third person

avatar, and omnipresent. The selection of games was

limited to those available via OnLive (about 300 titles
at the time of the experiments). Games were chosen

based on perceived popularity and with similar release

dates in an attempt to provide for relatively comparable

visual graphics quality. Table 1 summarizes the games
selected, with indicated classification and year of ini-

tial release. The first person avatar, third person avatar

and omnipresent games selected were Unreal Tourna-

ment III (UT), Batman: Arkham Asylum (Batman) and

Grand Ages: Rome (Rome), respectively. Screen shots
of each game are depicted in Figure 1, Figure 2 and

Figure 3. As a measure of the system impact, the min-

imum system requirements as specified by the game

manufacturers is provided in Table 2. The resources re-
quired for each game are similar, with Batman having a

higher memory requirement than the other two games

and Rome requiring a dual core Intel processor.

4 Mark Claypool et al.

Table 1 Games used in experiments

Release
Game Classification Year

Unreal Tournament III First person avatar 2007
Batman: Arkham Asylum Third person avatar 2009
Grand Ages: Rome Omnipresent 2009

Table 2 Recommended system requirements

Part UT Batman Rome

CPU PentD 2.66 PentD 3.0 Core 2 Duo 2.2
Ath64 X2 Ath64 X2
Dual 3800+ 3600+

Grph GeForce GeForce GeForce
8800 7900 7800

Radeon x800 Radeon x800 Radeon x850+
Mem 1 GB 2 GB 1 GB
Sftwre DirectX v9 DirectX v9 DirectX v9

Fig. 1 Unreal Tournament III screenshot

Fig. 2 Batman: Arkham Asylum screenshot

Fig. 3 Grand Ages: Rome screenshot

3.2 Measurement Testbed

Figure 4 depicts the measurement testbed setup for our

experiments.

Fig. 4 Measurement testbed

For turbulence experiments, an OnLive MicroCon-

sole runs the games and is connected to an HDTV over

HDMI running at 1080p. Another PC is configured as a

network router running FreeBSD and Dummynet [5] to
allow emulation of a wide variety of network conditions

at the IP level, including fine tuning of network capac-

ity, loss, and latency. The PC runs tcpdump to capture

traffic for analysis of turbulence after the experiments
completed. For frame rate experiments, a desktop PC

runs Win7-64 bit on a 3.01 GHz Intel Core 2 Duo, with

4GB RAM and a GeForce 9800 GT video card. The

On the Performance of OnLive Thin Client Games 5

PC runs Fraps5 to record frame rates for analysis after

the experiments completed. The WPI campus egress to

the Internet is 500 Mb/s, while switches on the campus

have 100 Mb/s and 1 Gb/s capacities.

3.3 Experiments

Pilot studies captured game traces for varying lengths

in order to determine how long individual game sessions
should run. Based on these runs, it was determined 2.5

minutes provided steady state behavior.

3.3.1 Games

For each game, a scenario was selected to represent core

game play.

– UT: A free-for-all match on the Rising Sun map was

started with: 10 Bots, no mutators, forced respawns,

and no limit on score or time. The player then com-
peted for weapons, armor, and health using them to

defeat the Bots.

– Batman: A challenge mode was used where the

player started in a small square room with 3 ene-
mies, with more appearing continuously. The player

used attack combos to incapacitate as many enemies

as possible.

– Rome: A empty map was used where the player

constructed buildings using the technology tree, with
no enemies encountered. The player built (in order):

3 insulas, 1 pig farm, 1 wheat farm, 1 aqueduct, 1

large water fountain, 1 logging shed, 2 more insulas,

1 butcher shop, 1 farmers market, 1 grape farm, and
2 logging sheds.

The packet captures proceeded from the start until
the end of each game session, with analysis trimming

each session to 2.5 minutes of core gameplay (i.e., load-

ing, authentication, menu phases, etc. are not included

– just gameplay).

3.4 Parameters

All together, the three games were tested over condi-
tions with varied capacity, loss and latency:

– Game genre: UT, Batman, and Rome.
– Capacity (downstream:upstream): 1 to 10 Mb/s and

no restriction

– Latency (round-trip): 0 milliseconds to 1000 mil-

liseconds

5 http://www.fraps.com

– Loss (downstream): 0% to 18% loss

– Iterations: 3 runs for each experiment condition, ex-

cept where noted

Performancemeasures captured include network and

application statistics:

– Network: packet sizes (bytes), inter packet times

(milliseconds), bitrates (Kb/s and Mb/s)

– Application: frame rates (f/s)

4 Analysis

Analysis proceeds by first exploring OnLive turbulence

for different game genres (Section 4.1) and with net-

work perturbations (Section 4.2). Frame rate analysis

provides OnLive performance in addition to the net-
work implications (Section 4.3). Turbulence compar-

isons with other applications is next (Section 4.4), fol-

lowed by a comparison with traditional game traffic

(Section 4.5). Analysis concludes with a summary (Sec-
tion 4.6).

4.1 Turbulence

Our traces show OnLive primarily uses UDP for both

downstream and upstream game traffic. To assess net-

work turbulence, bitrate, packet size and inter-packet
times are analyzed.

Figure 5 depicts a comparison of the downstream bi-

trate (computed every second) for OnLive for the three

games under test. In terms of bitrates, all three trials
look visually similar. Thus, in this graph, and all sub-

sequent bitrate graphs, only the second trial is shown.

The x-axis is the measurement time in seconds, and

the y-axis is the bitrate in Kb/s. Each game is de-

picted by a separate trendline. The top two lines are
UT and Batman, while the bottom line is Rome. The

similarity in bitrates for UT and Batman (about 6.3

Mb/s) could be because of the relatively similar cam-

era movements they provide to the player, while Rome
has around half the bitrate (about 3.8 Mb/s), possibly

because of the different camera angles afforded by an

omnipresent game. Moreover, our gameplay in Rome

had only construction and not combat which could ac-

count for the difference. There is visually more variance
in the bitrate in Rome than in UT or Batman.

Figure 6 depicts a comparison of the cumulative dis-

tribution functions (CDFs) of the downstream packet

sizes for the three games. The x-axis is packet size and
the y-axis is the cumulative distribution. Note, for read-

ability, only 1 out of every 1000 points are plotted. Vi-

sually, the trendlines are all similar, probably due to

6 Mark Claypool et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

B
itr

at
e

(K
b/

s)

Time (seconds)

UT
Batman

Rome

Fig. 5 Downstream bitrate

the nature of the encoding of the display images sent

from the server to the client. The mode, about 30%
of all packets, is 1414 bytes, which is smaller than the

MTU of 1500 bytes that could be used. About 10% of

the packets are 622 bytes. The other 60% of the packets

are distributed fairly uniformly between about 100 and

1400 bytes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Packet Size (bytes)

UT
Batman

Rome

Fig. 6 Downstream packet size

Figure 7 depicts a comparison of the inter-packet
time CDFs for the three games, also plotting 1 out of

every 1000 points for readability. The x-axis here is the

time between packets, in milliseconds. In general, inter-

packet times are quite small, with a median less than

half a millisecond. The maximum inter-packet times are
only tens of milliseconds. Visually, the trendlines are all

similar, particularly so for UT and Batman.

Figure 8 depicts a comparison of the upstream bi-

trate for OnLive for the three games, showing one trial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Inter-packet Time (milliseconds)

UT
Batman

Rome

Fig. 7 Downstream inter-packet times

(as for the downstream traffic, the other trials were sim-
ilar). The x-axis is the measurement time in seconds,

and the y-axis is the bitrate in Kb/s with trendlines

as in earlier graphs. Visually, all three games have con-

siderable variation in their upstream bitrates, ranging

from about 50 to 150 Kb/s. UT has a slightly higher
upstream bitrate than Batman or Rome, possibly due

to the fast-action nature of first person shooter games.

Note that the y-axis scale in Figure 5 is 40 times greater

than the y-axis scale in Figure 8 since the downstream
to upstream bitrate ratios are about 40 to 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50 60 70 80 90 100

B
itr

at
e

(K
b/

s)

Time (seconds)

UT
Batman

Rome

Fig. 8 Upstream bitrate

Figure 9 depicts a CDF of the upstream packet sizes

for the three games. Most upstream packets are small,

about 100 bytes of application payload after subtract-
ing the IP headers. Nearly all the packets are under

250 bytes. Note, the x-axis scale is only to 350 bytes

compared to a typical 1500 byte MTU.

On the Performance of OnLive Thin Client Games 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Packet Size (bytes)

UT
Batman

Rome

Fig. 9 Upstream packetsize

Figure 10 depicts a comparison of the inter-packet
time CDFs for the three games, plotting 1 out of every

200 points for readability. The inter-packet times are

still small, most under 20 milliseconds, but are consider-

ably larger than the downstream inter-packet times (the

x-axis scale for Figure 10 is about 10x larger than for
Figure 7). The maximum inter-packet times upstream

are slightly over 50 milliseconds. Visually, the trend-

lines are all similar, despite the fact that the player

interactions with each game genre may be considerably
different.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Inter-packet Time (milliseconds)

UT
Batman

Rome

Fig. 10 Upstream inter-packet times

Table 3 provides summary statistics (mean values)

for OnLive games, showing both upstream and down-

stream turbulence. Overall, OnLive traffic is very asym-
metric, with downstream having about 50x higher bi-

trates, 10x more packets per second and 6x larger pack-

ets.

4.2 Network Perturbations

Given the relative similarity in turbulence for the three

games studied, despite their different genres, for sub-

sequent experiments UT is used as the representative

OnLive game. Also, graphs of packet sizes and inter-

packet times are not shown – instead the concentration
is on bitrate to depict network turbulence. Also, as a

final focus, since OnLive downstream traffic dominates

that of upstream, primarily downstream traffic is ana-

lyzed unless noted otherwise.
As mentioned in Section 3, Dummynet was used to

restrict capacity on the link to the game console. Fig-

ure 11 depicts UT bitrates for 10 Mb/s and 5 Mb/s,

with the unrestricted trendline (top) from Figure 5 for

comparison. Restricting the bitrate to 10Mb/s (roughly,
that of a residential broadband link in the U.S.) on the

downlink yields a bitrate of about 4200 Kb/s, with a

further restriction to 5 Mb/s dropping the bitrate to

just over 2000 Kb/s. There is a slight decrease in vari-
ance with increased capacity restrictions. In both re-

stricted cases, the downstream bitrate is about half the

capacity restriction.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

B
itr

at
e

(K
b/

s)

Time (seconds)

Unrestricted
10 Mb/s

5 Mb/s

Fig. 11 Downstream bitrate with capacity restrictions

Dummynet was used to induce 1% and 1.5% packet

loss on the link to the game console and then also to

Table 3 Turbulence for OnLive games (upstream and down-
stream, mean values)

Bitrate Packet Size Inter-packet
(Kb/s) (bytes) Time (msec)

Game up down up down up down
UT 125 6247 146 947 9.5 1.2
Batman 100 6333 152 953 11.7 1.2
Rome 86 3817 143 914 13.4 1.6

8 Mark Claypool et al.

add 40 and 70 msec of round-trip latency. Figure 12

depicts the corresponding UT bitrate comparisons. Vi-

sually, there is little effect on bitrate from added latency

and loss, except perhaps slightly more bitrate variance

with increased loss.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

B
itr

at
e

(K
b/

s)

Time (seconds)

No loss
1% Packet loss

1.5% Packet loss

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

B
itr

at
e

(K
b/

s)

Time (seconds)

No added latency
40 msec added latency
75 msec added latency

Fig. 12 Downstream bitrate with induced packet loss (top)
or added latency (bottom)

Packet loss typically indicates congestion for TCP

flows, causing them to reduce their sending rates. On-
Live, running over UDP, does not benefit from TCP’s

automatic response to congestion and has the poten-

tial to consume more capacity than competing TCP

flows, or worse, to contribute to Internet congestion col-
lapse [16]. Ideally, high bitrate flows, such as OnLive

(with 6 Mb/s or more), are TCP-friendly with data

rates that do not exceed the maximum rates of confor-

mant TCP flows under the same network circumstances

(i.e., same round-trip times, loss rates and packet sizes).
In general, the bitrate of a TCP flow decreases with

round-trip time and loss rate. The TCP-friendly bi-

trate, T , in bytes per second, for a flow is [16]:

T ≤
1.5

√

2/3× s

R×√
p

(1)

with packet size s in bytes, round-trip time R in mil-

liseconds and packet loss fraction p.

Figure 13 depicts the bitrate for OnLive versus loss

rate (top) and added round-trip latency (bottom), with

the TCP-friendly rate trendline shown for each graph.

The loss rate is 0.01% in the latency graph and the la-

tency is 50 milliseconds (the round-trip time to the On-

Live server) in the loss graph. From the graphs, OnLive

is clearly not TCP-friendly for loss rates of 1% or higher
or for latencies of 40 milliseconds or higher. Worse, On-

Live’s bitrates are completely unresponsive to packet

loss, with OnLive flows with loss rates as high as 20%

having the same offered bitrate as loss rates of 0% – the
bitrate shown at 20% loss in Figure 13-bottom is 20%

less than the bitrate at 0% loss simply because 20% of

the packets are dropped.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20

B
itr

at
e

(K
b/

s)

Loss (percent)

OnLive
TCP friendly

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000

B
itr

at
e

(K
b/

s)

Latency (milliseconds)

OnLive
TCP friendly

Fig. 13 Bitrate versus loss rate (top) and latency (bottom)

Since OnLive and other thin client game systems
provide a new paradigm for network gaming, it is worth

considering the TCP-friendliness of games played on

traditional “fat” clients. Our earlier work [1] measures

the network traffic of traditional UT over a range of

loss and latency conditions. Bitrates are found to be
unresponsive to both latency and loss, suggesting, as

for OnLive UT, that traditional UT is not TCP-friendly

at high levels of loss and latency. Given the relatively

low fixed bitrate of 67 Kb/s for a single, traditional UT
client, traditional UT only becomes non-TCP-friendly

for loss rates higher than about 25% or latencies higher

than about 2000 milliseconds.

On the Performance of OnLive Thin Client Games 9

4.3 Frame Rate

Analysis of game frame rates provides insights into the

effects of network perturbations on player performance.

To broadly assess the impact of capacity on OnLive

frame rates, a 3 minute, 20 second game of UT was

played. Capacity was initially restricted to 10 Mb/s and
was decreased by 1 Mb/s every 10 seconds. Once at

1 Mb/s, the capacity was increased by 1 Mb/s every

10 seconds until it reached 10 Mb/s. As described in

Section 3.2, Fraps was used to record frame rates.
Figure 14 depicts the results. The y-axis is the frame

rate, the bottom x-axis is time in seconds since the ex-

periment started, and the top x-axis indicates the cor-

responding capacity in Mb/s at that time. In the figure,

the first observable change in the frame rate is around
40 seconds (6 Mb/s), with a rapid decrease in frame rate

thereafter. The flat “steps” that are about 5-10 seconds

long, as observed in the trend line, suggest 10 seconds

is enough time for the OnLive system to respond to
decreased network capacities. There is an rise in frame

rate at about 80 seconds (2 Mb/s), even though the ca-

pacity has not increased but rather is still decreasing.

Visually, the frame rate pattern to the left of 100 sec-

onds, when capacities are decreasing, is different than
the frame rate pattern to the right of 100 seconds, when

capacities are increasing. This may arise from the abil-

ity of systems to more easily observe decreased capacity

(observable by data loss), than to observe increased ca-
pacity which does not have a corresponding signal.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10

F
ra

m
e

R
at

e
(f

/s
)

Time (seconds)

Capacity (Mb/s)

Fig. 14 Frame rate over time, capacity decreasing 1 Mb/s
every 10 seconds then increasing

Instead of changing capacity mid-game, 1 minute
games were run with fixed capacity constraints ranging

between 1 Mb/s and 10 Mb/s. Figure 15 shows the re-

sults, with each point representing the average frame

rate at a specific capacity, shown with 95% confidence

intervals. Generally, capacities between 2 Mb/s and 6

Mb/s provide 25-30 f/s. There is a linear increase in

frame rate from 1 Mb/s to 2 Mb/s, and a roughly linear

increase in frame rate from 6 Mb/s to 9 Mb/s. However,
the larger confidence intervals in this range suggest On-

Live is adjusting the target frame rate frequently. At 9

Mb/s or greater, the average frame rate is near the 60

f/s maximum.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10

F
ra

m
e

R
at

e
(f

/s
)

Capacity (Mb/s)

Fig. 15 Average frame rates with capacity constraints

The mean frame rate may be indicative of perfor-

mance, but the distribution of frame rates provides a

more nuanced view. OnLive lists 2 Mb/s as the min-

imum downstream Internet capacity and 5 Mb/s as
the recommended downstream Internet capacity.6 Fig-

ure 16 depicts the distributions of bitrates for different

capacity constraints. The distributions in Figure 16-top

are above the recommended capacity, distributions in
Figure 16-middle are between the minimum and rec-

ommended capacities, and distributions in Figure 16-

bottom are below the minimum capacity. For all graphs,

the x-axes are the frame rates achieved and the vertical

axes are the cumulative distributions.

When capacities are 7 Mb/s or higher, most of the

time OnLive achieves frame rates near 60 f/s. Capac-

ities of 9 Mb/s or 10 Mb/s always have at least 50
f/s, while capacities 7 Mb/s and 8 Mb/s have frame

rates between 20 f/s and 50 f/s about 20% of the time.

For capacities in the range 3 Mb/s to 6 Mb/s, OnLive

consistently achieves frame rates between 20 f/s and

30 f/s, with a median around 25 f/s. At 2 Mb/s, the
minimum according to OnLive, the median frame rate

drops to about 15 f/s and frame rates are never above

6 https://support.onlive.com/entries/

22264983-computer-and-internet-requirements-for-pc-mac

10 Mark Claypool et al.

25 f/s. Below 2 Mb/s, capacities of 1.75 Mb/s and 1.50

Mb/s achieve frame rates mostly between 10 f/s and

15 f/s, with only about 10% of the frame rates above

this range and about 10% of the frame rates below 5

f/s. For capacities of 1.00 Mb/s and 1.25 Mb/s, median
frame rates are below 3 f/s, and only about 10% of the

frame rates are above 7 f/s.

Frame rates affect the smoothness of the visual dis-
play and also the responsiveness of the game for play-

ers. Thus, understanding the effects that capacity con-

straints and other network perturbations have on game

players is critical to ascertaining the efficacy of thin
client gaming. Although a user study measuring the

effects of OnLive frame rate on player performance is

beyond the scope of this paper, predictions can be made

based on previous work. Claypool and Claypool [9] con-

ducted several detailed user studies that measured the
effects of frame rate on performance for UT 2003 played

on traditional “fat” clients. Player performance peaked

at about 60 f/s and degraded with a decrease in frame

rate until it bottomed out at 3 f/s. Based on this data,
assuming the “best” player performance occurs at 60+

f/s (normalized to 1), then a model of performance p

based on frame rate x in frames/second is derived in

Equation 2. Figure 17 depicts Equation 2, with the x-

axis the frame rate and the y-axis the normalized per-
formance (1 is “best” and 0 is “worst”).

p(x) = 0.30× ln(x)− 0.25 (2)

While capacity constraints have also been observed

to degrade the visual quality of OnLive, our previous
work [13,11] has shown that scaling the visual quality of

games, while noticeable and important to players, has

little effect on player performance. Since OnLive has

been observed to adapt bitrates to the network capacity

(see Figure 11), the loss rates remain similar (negligible)
given a fixed capacity.

Whereas Equation 2 provides a prediction of perfor-

mance for a given frame rate, predicting performance
for a given capacity constraint may help inform network

choices, such as the amount of capacity to purchase

from an ISP provider. Using the median frame rate for

each capacity constraint as the input for Equation 2
and fitting a curve to the result gives performance p

(between 0 and 1) with bitrate constraint c in Mb/s in

Equation 3.

p(c) = 0.37× ln(c) + 0.2 (3)

Figure 18 depicts Equation 3, with the x-axis the
capacity constraint and the y-axis the normalized pre-

dicted performance (1 is “best” and 0 is “worst”). Play-

ers that tolerate no more than a 10% degradation in

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Frame Rate (f/s)

10 Mb/s
9 Mb/s
8 Mb/s
7 Mb/s
6 Mb/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Frame Rate (f/s)

5 Mb/s
4 Mb/s
3 Mb/s
2 Mb/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Frame Rate (f/s)

1.75 Mb/s
1.50 Mb/s
1.25 Mb/s
1.00 Mb/s

Fig. 16 Downstream bitrates with capacity constraints –
higher than recommended capacity (top), minimum capac-
ity to recommended capacity (middle), lower than minimum
capacity (bottom)

On the Performance of OnLive Thin Client Games 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

w
or

st
be

st

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Frame rate (f/s)

0.30 ln(x) - 0.25

Fig. 17 Model of player performance versus frame rate based
on data from [9]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

w
or

st
be

st

P
re

di
ct

ed
 P

er
fo

rm
an

ce

Capacity (Mb/s)

prediction point
0.37 ln(x) + 0.2

Fig. 18 Predicted player performance versus capacity

performance need a capacity of 7 Mb/s or higher. Play-

ing OnLive at the recommended 5 Mb/s results in player

performance degradation of about 20%, while playing

OnLive at the minimum of 2 Mb/s results in about 50%
degradation.

To broadly assess the impact of packet loss on On-

Live frame rates, a 3 minute, 20 second game of UT was
played. The packet loss rate was initially set to 0% and

was increased by 2% every 10 seconds. Once at 18%,

the loss rate was then decreased every 10 seconds until

it reached 0%. The capacity constraint remained at 10

Mb/s throughout the test.

Figure 19 depicts the results. The y-axis is the frame

rate, the bottom x-axis is time in seconds since the ex-

periment started, and the top x-axis indicates the cor-
responding loss rate in percent at that time. Up until

about 4% loss, OnLive tries to maintain a frame rate

near 60 f/s, but there is a noticeable drop at about

6% loss where the frame rate drops to about 30 f/s.

There is a slow degradation in frame rate until about

18% having, where the frame rate is below 20 f/s. The

decreasing loss rate at time 120 s results in a slightly

increasing frame rate. Note, however, even when the
loss rate is above 4% at the end of the run, the frame

rate does not recover to the 50+ f/s seen in the begin-

ning. This behavior suggests OnLive is conservative in

increasing target frame rates until it can be certain the
network conditions can support it.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

0 2 4 6 8 10 12 14 16 18 18 16 14 12 10 8 6 4 2 0

F
ra

m
e

R
at

e
(f

/s
)

Time (seconds)

Loss (percent)

Fig. 19 Frame rate over time, loss increasing by 2% every
10 seconds then decreasing

Instead of changing loss rate mid-game, 1 minute

games were run with fixed loss rates between 0% and

18%. Figure 20 shows the results, with each point the
average frame rate at that loss rate, with a 95% con-

fidence interval. Only at 0% loss does OnLive achieve

nearly 60 f/s. OnLive at loss rates between 2% to 18%

has frame rates of about 35 f/s to under 20 f/s.

4.4 Application Comparison

In order to compare OnLive downstream traffic to video,

YouTube was selected as a representative candidate

of pre-recorded streaming video. YouTube is probably

the most popular video streaming service on the In-

ternet with over 6 billion hours of video watched each
month [31]. Aside from its popularity, YouTube has the

technical capabilities to allow videos to be uploaded

and viewed in high definition 1080p (1920x1080 pixels)

resolution.

Skype was selected as a representative candidate for

live streaming video. Skype’s core functionality pro-

vides Voice over IP (VoIP) services, but Skype also

12 Mark Claypool et al.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18

F
ra

m
e

R
at

e
(f

/s
)

Loss (percent)

Fig. 20 Average frame rate with packet loss

provides video conferencing for camera-enabled com-

puters. Skype is a one of the most popular VoIP appli-

cations, with 663 million registered users as of the end

of 2010 [28]. Skype uses VP8 for video encoding [18],

allowing high definition 720p (1280x720 pixels) resolu-
tion.

The PC in Section 3.2 runs Skype and YouTube

for measuring streaming application performance, and
Fraps to record application frame rates. The Skype ap-

plication connects to a MacBook for two-way confer-

encing.

For the Skype testing, all non-essential applications

were closed before the Skype video call was made. One

participant was on the MacBook and the other on the

PC. A short pause was given to establish the call, then
the session was set to full screen mode before starting

Fraps and the packet capture.

For YouTube testing, a video7 of an omnipresent
game, a two-player session of StarCraft 2, was chosen

for the YouTube tests. The video could not start au-

tomatically at 1080p in fullscreen. So, using Google

Chrome, the YouTube link was pasted into the URL
bar at the same time the packet capture was started,

and as the YouTube video came up in the browser, it

was changed to full screen mode and then to 1080p.

Studies were conducted with YouTube and Skype

over a range of network conditions, with the down-

stream bitrates analyzed. Figure 21 depicts a compar-

ison of the bitrates for YouTube, UT and Skype. The
x-axis is the time in seconds and the y-axis is the mea-

sured bitrate for each flow, calculated every 0.5 seconds.

Each application is shown with a different trendline.

YouTube videos are pre-recorded, so unlike in On-

Live or Skype, YouTube can potentially download as

7 http://www.youtube.com/watch?v=0NTeyF6wQUs

fast as the available capacity will allow. In fact, YouTube

finishes the video download in about 90 seconds, so the

x-axis is scaled shorter than for previous bitrate graphs.

YouTube uses TCP, allowing the bitrate to expand to

fill available capacity, while also having more variation
due to congestion and flow control mechanisms built

into the protocol.

Skype has a significantly lower bitrate than OnLive,
only about 2200 Kb/s compared with about 6200 for

OnLive. The bitrate ratio of OnLive to Skype, about

2.8 to 1, is on par with the ratio of their screen reso-

lutions (1080p vs. 720p), about 2.25 to 1. Visually, the

variances in bitrates for Skype and OnLive are similar.

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

 0 10 20 30 40 50 60 70 80 90

B
itr

at
e

(K
b/

s)

Time (seconds)

YouTube
OnLive
Skype

Fig. 21 Downstream bitrate for streaming applications

4.5 Traditional Game Comparison

In order to better understand what OnLive turbulence

means to online games, this section briefly compares
the results above with previously published results on

turbulence in traditional (i.e., non-thin client) network

games.

Warcraft is chosen for a third-person, omnipresent

game, Madden NFL for a third-person, avatar game

and Unreal Tournament (on the PC) for a first-person,

avatar game, with complete published analysis available

in Sheldon et al. [27], Nichols and Claypool [25], and
Beigbeder et al. [1], respectively.

A complete comparison for all cases, upstream and

downstream, using bitrate, packet size and inter-packet

times is difficult, and, moreover, such analysis would
likely not be informative because of the sheer number

of details. Instead, median values are summarized for

bitrate, packet size and inter-packet times. While previ-

ous analysis of the selected games only provides a sum-
mation of downstream and upstream turbulence, tra-

ditional network games are relatively symmetric down-

stream/upstream, anyway. For traditional network games,

On the Performance of OnLive Thin Client Games 13

general gameplay is used, as in our OnLive experiments,

and not specific, isolated player actions nor other as-

pects of online gaming (e.g., login and server selection).

Table 4 provides a comparison of network turbu-

lence for thin client games (OnLive), compared with

traditional client games. The thin client games are shown

with upstream and downstream values separated, while
the traditional client games are shown with upstream

and downstream values combined since separate data

is not readily available. Downstream, thin client games

have much greater turbulence across all genres, with
about 100-700 times greater bitrates, 15-20 times larger

packets, and 60-200 times more frequent packets. This

is perhaps expected given that traditional game clients

receive game object updates while thin game clients re-

ceive game frames. However, even upstream, thin client
games have significantly greater turbulence, with 2-15

times greater bitrates, 2 times larger packets, and 5-20

times more frequent packets. Thus, any switch to thin

client games from traditional client games must take
into account a significant change in the network traffic

both downstream and upstream.

Table 4 Turbulence for Network games (medians, thin: up-
stream downstream, trad.: upstream + downstream)

Bitrate Pkt Size Inter-Pkt
Game (Kb/s) (bytes) (msec)
Trad. Omnipresent 5 49 200
Thin Omnipresent 84 3756 130 970 9.0 1.0
Trad. Third person 14 77 75
Thin Third person 97 6339 146 1242 8.6 0.7
Trad. First person 67 75 45
Thin First person 124 6247 130 1203 8.0 0.7

4.6 Summary Comparison

A final summary seeks to put OnLive turbulence in

the context of other streaming applications. As before,

the focus is on downstream traffic which is often the

bottleneck for many applications. Given the similarity

in packet sizes and some similarity in bitrates, UT is
chosen as the representative game for comparison. Sec-

ond Life is selected as a representation of a multiplayer

virtual environment (MVE), with complete published

analysis from Kinicki and Claypool [20]. A main dif-
ference between a MVE and a traditional online game

is in an MVE, users can provide custom content (e.g.,

avatar skins) to the game environment.

Table 5 presents a comparison of the relevant data.

Traditional network games have relatively low amounts

of turbulence, considering bitrates, packet sizes and inter-

packet times. Virtual environments have an order of

magnitude more turbulence, reflecting the flexible, dy-

namic nature of the player interactions. Live video has

still three times more turbulence than virtual environ-
ments, owning to the frequent updates required to dis-

play video in realtime. While pre-recorded video has

flexible data rates since there are fewer time constraints

on clients watching the video, pre-recorded video gener-
ally expands to fill available capacity. Thin client games

appear most similar in turbulence to live video, requir-

ing frequent transmission of large packets in order to

maintain a smooth frame rate depicting the game. This

large turbulence, coupled with the real-time nature of
online games, suggests meeting the quality of service re-

quirements of thin client games is a challenge in terms

of network planning similar to high-quality video con-

ferencing.

Table 5 Turbulence for online applications (medians)

Bitrate Pkt Size Inter-Pkt
Application (Kb/s) (bytes) (msec)

Traditional Game 67 75 45
Virtual Environment 775 1027 9
Live Video 2222 1314 0.1
Thin Game 6247 1203 0.7

Pre-recorded Video 43914 1514 0.1

5 Conclusions

The growth in connectivity and capacity of networks

presents the opportunity for thin clients, clients that
primarily handle input and output and not computa-

tion, to be used for computer games. Understanding

the network traffic characteristics, the network turbu-

lence, is an important component for designing systems
to support this new kind of traffic. Moreover, analyzing

the frame rates of thin client under different network

conditions can help determine appropriate network con-

ditions to provide for acceptable player performance.

This paper provides a detailed study of the network

turbulence of a prominent, commercial thin client game

system – OnLive. Carefully designed experiments allow

for comparison of network turbulence across game gen-
res and streaming video applications and a range of net-

work conditions. Frame rate analysis provides insights

into the quality of experience over the network condi-

tions, with predictions of player performance over net-
work capacity constraints. Leveraging previous research

allows comparison with traditional network game tur-

bulence.

14 Mark Claypool et al.

Analysis shows OnLive traffic has downstream tur-

bulence most similar to high-definition, live video, with

large, frequent packets and high bitrates. OnLive up-

stream traffic has far less turbulence than downstream

traffic, but still significantly higher bitrates and packet
rates than traditional upstream game traffic. OnLive

turbulence does not respond to network perturbations

much, but does adapt to changes in downstream ca-

pacity and in the frame rates provided to players when
there is packet loss. Under even moderate conditions of

loss and latency, OnLive does not respond to signals of

congestion, using significantly more capacity than TCP.

To avoid frame rate degradation impacting play, play-

ers need capacities of 7 Mb/s or higher. Playing OnLive
even at the recommended 5 Mb/s results in about a 20%

degradation in player performance, and the minimum

of 2 Mb/s results in about a 50% degradation in player

performance.
Future work can include testing additional games,

possibly expanding the selection in the genres chosen or

selecting other genres. Additional work could measure

and analyze OnLive performance under other network

loss conditions, such as packet loss over wireless net-
works. Other thin client game systems can be evaluated,

such as GameNow. Research to classify and then poten-

tially treat thin client traffic can build directly upon the

results and analysis presented in this paper, with im-
pacts assessed for actual thin client traffic. While this

paper includes predictions of the effects of frame rate on

player performance in OnLive based on past measure-

ments of traditional clients, future work might include

detailed user studies measuring the effects of frame rate
on player performance in OnLive. The measurement

data gathered in our experiments can be used to build

thin client game traffic models. For this and other pur-

poses, such as trace driven simulations, the traces from
our experiments are available at:

http://perform.wpi.edu/downloads/#onlive

References

1. Tom Beigbeder, Rory Coughlan, Corey Lusher, John
Plunkett, Emmanuel Agu, and Mark Claypool. The Ef-
fects of Loss and Latency on User Performance in Unreal
Tournament 2003. In Proceedings of ACM Network and
System Support for Games Workshop (NetGames), Port-
land, OG, USA, September 2004.

2. M. Billinghurst, S. Bee, J. Bowskillb, and H. Kato.
Asymmetries in Collaborative Wearable Interfaces. In
Third International Symposium on Wearable Computers
(ISWC), 1999.

3. Fabrizio Biscotti, Brian Blau, John-David Lovelock,
Tuong Huy Nguyen, Jon Erensen, Shalini Verma, and
Venecia Liu. Market trends: Gaming ecosystem, 2011.
ID Number: G00212724.

4. Mike S. Borella. Source Models of Network Game Traf-
fic. Elsevier Computer Communications, 23(4):403 – 410,
February 2000.

5. M. Carbone and L. Rizzo. Dummynet Revisited. ACM
SIGCOMM Computer Communications Review, 40(2),
April 2010.

6. Yu-Chun Chang, Po-Han Tseng, Kuan-Ta Chen, and
Chin-Laung Lei. Understanding the Performance of
Thin-Client Gaming. In Proceedings of IEEE CQR, May
2011.

7. Wu chang Feng, Francis Chang, Wu chi Feng, and
Jonathan Walpole. Provisioning On-line Games: A Traf-
fic Analysis of a Busy Counter-Strike Server. In Pro-
ceedings of the ACM SIGCOMM Internet Measurement
Workshop (IMW), Marseille, France, November 2002.

8. Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-
Ying Huang, and Chin-Laung Lei. Measuring the La-
tency of Cloud Gaming Systems. In Proceedings of ACM
Multimedia, Nov 2011.

9. Kajal Claypool and Mark Claypool. On Frame Rate
and Player Performance in First Person Shooter Games.
ACM/Springer Multimedia Systems Journal (MMSJ),
2007.

10. Mark Claypool. Motion and Scene Complexity for
Streaming Video Games. In Proceedings of the 4th ACM
International Conference on the Foundations of Digital
Games (FDG), Florida, USA, April 2009.

11. Mark Claypool and Kajal Claypool. Perspectives, Frame
Rates and Resolutions: It’s all in the Game. In Pro-
ceedings of the 4th ACM International Conference on
the Foundations of Digital Games (FDG), Florida, USA,
April 2009.

12. Mark Claypool and Kajal Claypool. Latency Can Kill:
Precision and Deadline in Online Games. In Proceedings
of the First ACM Multimedia Systems Conference (MM-
Sys), Scottsdale, Arizona, USA, February 2010. (Invited
paper).

13. Mark Claypool, Kajal Claypool, and Feissal Damaa. The
Effects of Frame Rate and Resolution on Users Playing
First Person Shooter Games. In Proceedings ACM/SPIE
Multimedia Computing and Networking (MMCN) Con-
ference, San Jose, CA, USA, January 2006.

14. Mark Claypool, David Finkel, Alexander Grant, and
Michael Solano. Thin to Win? Network Performance
Analysis of the OnLive Thin Client Game System . In
Proceedings of the 11th ACM Network and System Sup-
port for Games (NetGames), Venice, Italy, November
2012.

15. J. Faerber. Network Game Traffic Modeling. In Proceed-
ings of the ACM Network and System Support for Games
(NetGames), Braunschweig, Germany, April 2002.

16. Sally Floyd and Kevin Fall. Promoting the Use of End-
to-End Congestion Control in the Internet. IEEE/ACM
Transactions on Networking, February 1999.

17. P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube Traf-
fic Characterization: A View From the Edge. In In Pro-
ceedings of the ACM Internet Measurement Conference
(IMC), San Diego, CA, USA, October 2007.

18. The H. Skype Moves to VP8 for All Video Calls, Au-
gust 2011. http://www.h-online.com/open/news/item/-
Skype-moves-to-VP8-for-all-video-calls-1318315.html.

19. Joeng Kim, Ricardo A. Baratto, and Jason Nieh.
pTHINC: A Thin-Client Architecture for Mobile Wireless
Web. In Proceedings of the World Wide Web Conference
(WWW), Edinburgh, Scotland, May 2006.

20. James Kinicki and Mark Claypool. Traffic Analysis of
Avatars in Second Life. In Proceedings of the 18th ACM

On the Performance of OnLive Thin Client Games 15

International Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video (NOSSDAV),
Braunschweig, Germany, May 2008.

21. Albert Lai and Jason Nieh. On the Performance of Wide-
Area Thin-Client Computing. ACM Transactions on
Computer Systems, 24(2):Pages 175 – 209, May 2006.

22. T. Lang, G. Armitage, P. Branch, and H-Y. Choo. A
Synthetic Traffic Model for Half Life. In Australian
Telecommunications Networks & Applications Confer-
ence (ATNAC), Melbourne, Australia, December 2003.

23. T. Lang, P. Branch, and G. Armitage. A Synthetic Traf-
fic Model for Quake 3. In ACM SIGCHI Advances in
Computer Entertainment (ACE), Singapore, June 2004.

24. Yue Lu, Yong Zhao, Fernando Kuipers, and Piet Van
Mieghem. Measurement Study of Multi-party Video Con-
ferencing. In Proceedings of the 9th IFIP TC 6 Interna-
tional Conference on Networking, pages 96–108, 2010.

25. James Nichols and Mark Claypool. The Effects of La-
tency on Online Madden NFL Football. In Proceedings of
the 14th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video
(NOSSDAV), Kinsale, County Cork, Ireland, June 2004.

26. Keith Packard and James Gettys. X Window System
Network Performance. In Proceedings of the USENIX
Annual Technical Conference, FREENIX Track, pages
207 – 218, San Antonio, TX, USA, 2003.

27. Nathan Sheldon, Eric Girard, Seth Borg, Mark Clay-
pool, and Emmanuel Agu. The Effect of Latency on
User Performance in Warcraft III. In Proceedings of
ACM Network and System Support for Games Workshop
(NetGames), Redwood City, CA, USA, May 2003.

28. Telecompaper. Skype Grows FY Revenues
20%, Reaches 663 Mln Users, March 2011.
http://www.telecompaper.com/news/skype-grows-
fy-revenues-20-reaches-663-mln-users.

29. Davy De Winter, Pieter Simoens, Lien Deboosere,
Filip De Turck, Joris Moreau, Bart Dhoedt, and Piet
Demeester. A Hybrid Thin-client Protocol for Multime-
dia Streaming and Interactive Gaming Applications. In
Proceedings of Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video (NOSSDAV),
Newport, RI, USA, June 2006.

30. Yang Xu, Chenguang Yu, Jingjiang Li, and Yong
Liu. Video Telephony for End-consumers: Measurement
Study of Google+, iChat, and Skype. In Proceedings
of the ACM Internet Measurement Conference (IMC),
Boston, MA, November 2012.

31. YouTube. Statistics, 2013. http://www.youtube.com/-
t/press statistics.

32. Sebastian Zander and Grenville Armitage. A Traffic
Model for the Xbox Game Halo 2. In Proceedings of
International Workshop on Network and Operating Sys-
tem Support for Digital Audio and Video (NOSSDAV),
Stevenson, WA, USA, June 2005.

33. Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose.
Characteristics of YouTube Network Traffic at a Campus
Network - Measurements, Models, and Implications. El-
sevier Computer Networks, 53(4):501–514, March 2009.

