
Game Server Selection for Multiple Players

Steven Gargolinski, Christopher St. Pierre, and Mark Claypool
CS Department, Worcester Polytechnic Institute
100 Institute Road, Worcester, MA, 01609, USA

claypool@cs.wpi.edu

ABSTRACT
The increase in power and connectivity of computers has en-
abled a growth in network games, with many games having
numerous servers to which a player can connect. The game
server selected influences the game play, both by impact-
ing the game type and map choice as well as the connec-
tion latency and server performance. Often, geographically
spread-out friends, family and clan members want to play
together on a centrally-located game server with good per-
formance. Unfortunately, current game server selection tools
only consider the perspective of a single client, with mul-
tiple players left to coordinate their game server selection
manually through an out-of-band means, such as telephone
or online chat. This manual server coordination process is
time-consuming, at best, and error-prone, at worst, often re-
sulting in the selection of a poorly performing game server.
This paper presents an architecture that allows geographi-
cally dispersed players that want to play together to select
the best game server for their shared game play. Implemen-
tation details of a working system based on the architecture
are presented, including a preliminary evaluation illustrat-
ing the system’s effectiveness.

Categories and Subject Descriptors: C.2.m [Computer-
Communication Networks]: Miscellaneous
General Terms: Measurement, Performance

Keywords: Server selection, Network games

1. INTRODUCTION
The online component of video games has grown consid-

erably over the past decade with some recent games being
released with only online multi-player gameplay. Multiple
player network computer games can make up around half of
the top 25 types of non-traditional traffic for some Internet
links [5] and are predicted to make up over 25% of Local
Area Network (LAN) traffic by the year 2010.

Many network games allow players to choose which server

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames’05, October 10–11, 2005, Hawthorne, New York, USA.
Copyright 2005 ACM 1-59593-157-0/05/0010 ...$5.00.

to connect to for their online play. For many games, this
arrises because individual users can run their own game
servers, allowing clients to connect to their server from any-
where on the Internet. Nearly all popular first person shoot-
ers (such as Quake, Doom, and Battlefield) allow individual
users to run game servers. Similarly, most real-time strat-
egy games (such as Warcraft and Age of Mythology) allow
users to host a game, thus providing many choices for clients
playing online.

And the choice of game server matters. Game servers can
become full, limiting a player’s ability to join the server. The
requirement of some game servers for clients to have cheat
protection enabled (such as PunkBuster), or specific client
versions installed may also physically limit a player’s choices.
The choice of the game map, game configuration and other
in-game parameters (such as having friendly-fire disabled for
a team-based first-person shooter) can determine a player’s
desire to join a particular game server.

Even if all physical and preferential game conditions are
met by a game server, the network and server performance
will impact the choice of the best server. The range of la-
tencies from a client to all game servers can be as broad
as the range of end-to-end Internet latencies. Moreover,
game players care about application to application laten-
cies, not just end-host to end-host latencies, so latency from
server load adds to the network latency. Several studies have
demonstrated the negative effects latency can have on player
performance [1, 2, 6, 7], making selection of a close and fast
server important for good online game play.

The problem of game server selection can be compounded
when geographically separated players want to play together
on the same game server. This can arise when friends and
family hook up for a regular on-line gaming night or when
more formalized teams of players (clans) compete against
other teams on a regular basis. A server that is fast for
player A may be slow for player B and vice versa. Finding
a game server that performs well for all players that want
to play together requires server information to be shared
among the clients.

With current game server selection browsers, when a player
starts a game client, the client contacts a master server that
lists all game servers that are up at that time. The client
then individually pings each server to get latency informa-
tion as well as server configuration parameters (map in play,
number of players, etc.). A player can then sort the result-
ing list of game server information in a variety of ways, such
as by increasing latency or by server map type.

While somewhat flexible for one player, current game server

browsers provides no support at all for selection of a good
server that suits multiple players that want to play together.
Instead, the players must manually collate information from
their individual server browsers in order to find an appro-
priate game server. Using a communication mechanism ex-
ternal to the game (such as instant messaging or Internet
phone), players typically offer and counter-offer game server
choices one-by-one until a seemingly suitable choice is found.
Not only is this tedious, but it is prone to sub-optimal so-
lutions. A popular game on a busy night can provide thou-
sands of server choices, making consideration of all servers
impractical. Moreover, manually keeping track of perfor-
mance parameters (such as the lowest overall latency or the
fairest latency for all players) is prone to errors, especially
when more than two players want to play together.

This paper proposes an architecture that allows geograph-
ically dispersed players that want to play together to select
the best server for their game play. The idea is that optimal
game server selection for multiple players requires that the
game clients share information about their view of possible
game servers with other game clients. In our approach, game
clients gather server information in the same manner as they
would for single player game play. Then, the server infor-
mation for all clients is sent to a host that combines all the
game client information, selecting the best server based on
a customizable server selection algorithm. The game clients
are then informed of the game server choice and each player
joins in a game at the selected server. Preliminary evalua-
tion illustrates the difficulties in selecting a game server for
multiple players using state of the art (manual) means, and
shows the promise of our approach.

The rest of this paper is organized as follows: Section 2
describes the state of the art in game server selection; Sec-
tion 3 details our approach for server selection for multiple
players; Section 4 presents a preliminary evaluation of the
approach; Section 5 summarizes the paper; and Section 6
presents possible future work.

2. STATE OF THE ART

2.1 Game Server Selection for One Player
For many online games, players must specify the game

server to which they want to connect before starting. A
player chooses a game server via a server browser, a tool
that obtains and displays game server information. The
server browser contacts a well-known master server1 to ob-
tain a list of the active game servers, then sends individual
ping packets to each active game server. The ping packets
provide an estimate of the latency to each game server and
contain information about the game type and game server.
The server browser then allows the player to sort by various
fields (number of players, game type, ping time, etc.). After
selecting an appropriate game server, a player can launch
the game, connecting to that server.

2.2 Game Server Selection for Multiple Play-
ers

Currently, the only way for two geographically separated
players that want to play together to find a game server
which performs well from both locations is through a te-

1A list of master servers for many popular games can be
found at http://www.qstat.org/qstatdoc.html.

Figure 1: Manual Game Server Selection Flowchart
for Two Players

dious, sub-optimal, trial-and-error method (which also re-
quires some sort of external communication mechanism, such
as a telephone or instant messaging).

As an example, assume Player A is connecting from San
Francisco, California and wants to play with Player B, con-
necting from Tokyo, Japan. Figure 1 depicts a flowchart
of the steps each player would need to carry out before a
(hopefully) appropriate game server was found.

Players A and B start their server browser and obtain
game information as if selecting a game server for a single
player.

Player A begins with the servers that have the lowest ping
times and proceeds through the list to the servers with the
highest ping times. Player A suggests a possible game server
to Player B. The server with the lowest ping time to San
Francisco most likely does not have the lowest ping time to
Tokyo. Therefore, Player B is required to scan through her
list of servers until she is able to locate the specified server.

When both players have located the same server in their
server browser, the next step is to look at the two ping
values and decide if this server is acceptable. Assuming that
the server in question is located in San Diego, it may well
provides a low ping time from San Francisco, but will likely
provide a significantly higher ping time across the Pacific
Ocean from Tokyo and prove unacceptable.

There are then two basic options on how to proceed. In
the first option, player A could move down his server list
and propose a new game server to Player B, most likely the
second best server on his list. At this point, the process dis-
cussed above would repeat itself with this new game server.
Player B would find the new game server on her list, eval-
uate it, and make a decision. In the second option, Player
B could make a counter-offer, finding a server at the top of
her list and reporting it to Player A. Player A would locate
the server in his own server browser, check the ping value,
and decide if the server is acceptable for game play or not.

This process will repeat itself until a game server is pro-
posed by Player A and accepted as playable by Player B (or
vice-versa).

This method is both time-consuming and often yields sub-
optimal results. For many games, the number of game
servers available at any given time makes checking every
possible server impractical, a problem that will be exacer-
bated in the future as online, multi-player games proliferate.
Even evaluating a very a small percentage of these servers
is extremely time-consuming. Assuming it takes 10 seconds
to evaluate the effectiveness of one server, searching through
the top-10 servers for each player takes over 3 minutes. This
is often larger than the round-time in first person shooter
games, meaning the game server conditions will likely have
changed since the server selection process started. Because
of this delay (not to mention any errors in doing the manual
correlation), players end up making a game server choice
which is probably not optimal.

The situation discussed assumes that only two players are
interested in playing together. As we add more users into
this scenario, the problem becomes even more tedious, time-
consuming and error-prone.

2.3 QStat
QStat is a command-line program that gathers real-time

statistics from Internet game servers [4], information that a
game server browser can use to allow a game client to select
an appropriate server. Most games that QStat supports are
first-person shooters (Quake, Half-Life, etc.) and since most
first-person shooters support server browsing using either
the Unreal or Quake protocols, QStat also works with most
first-person shooters.

QStat obtains the latency information for each game server
by sending an application-level ping packet over UDP to
the game server. Upon receiving the ping packet, the game
server responds with basic game information. The data in
the ping response can be formatted in several ways, includ-
ing XML. Upon receiving the ping response, QStat records
the latency as the time between sending the ping and receiv-
ing the response. In the event the ping or the ping response
are lost (or the server is down), QStat will repeat the ping
request two additional times.

For some examples, the following command obtains de-
tailed server information for all Quake III servers registered
with the master server:

qstat -q3m,68 master3.idsoftware.com -R -P

and the following command obtains basic server information
from a specific Quake III server at port 27960:

qstat -q3s 216.12.96.41:27960

3. SERVER SELECTION FOR MULTIPLE
PLAYERS

This section presents an architecture that supports game
server selection for multiple players. The architecture fea-
tures a master-slave system, where a central master process
controls the slave processes run locally by game players on
their clients. The master instructs the slaves to gather server
information, transmit the information to the master and,
ultimately, run the game on the server selected. A system
implementation using the architecture is available for down-
load at http://www.cs.wpi.edu/˜claypool/papers/musst/.

Figure 2: Architecture and Interaction for Game
Server Selection for Multiple Players

3.1 Architecture
Typically, one player agrees to be a host, responsible for

setting up the game. The other players act as clients, re-
sponsible only for connecting to the host. There is always
exactly one host, who may or may not also be a client inter-
ested in playing in the game. Any number of players may
run clients and connect to the host. The interaction between
the host and the clients is depicted in Figure 2.

The host first selects game options of interest to the play-
ers, such as acceptable maps, game type (Deathmatch, Cap-
ture the Flag, etc.) and the number of players in the group
that want to play together. The host then goes into a lis-
tening state, waiting for the specified number of clients to
connect (step 1 in Figure 2).

Each client is then responsible for connecting to the host
(step 2). To do this, clients need only to specify the IP
address of the host. No other options are specified at the
client side.

The host remains in the listening state until the number
of players that want to play together have connected. At
this point, the host uses the options specified in order to
build a QStat command (see Section 2.3) which, when run,
allows the clients to gather game server data from the game’s
master server. The server then transmits this command line
data to each of the clients (step 3).

Upon receiving the command line options sent by the host,
each client executes QStat and collects the QStat data re-
turned, describing all relevant game servers in XML format
(step 4). When the client finishes gathering the data, it
transfers the data information back to the host (step 5).

The host receives XML data from the clients until it has
collected a complete set of data from each connected client.
The host parses the data files from each client, reading the
information into internal data structures for further selec-
tion (step 6).

This data is then run through a series of algorithms (de-
scribed in Section 3.2) to determine the best server for the
players (step 7). The server selected is sent back to each
client along with the proper command required to launch
the chosen game and connect to the indicated game server

Player Location IP ISP Connection

A Hoorn, The Netherlands 82.217.15.247 Cable modem
B Massachusetts, United States 130.215.239.33 T3
C Kota Bharu, Malaysia 60.48.62.140 DSL
D North Carolina, United States 67.77.3.251 DSL

Table 1: Participants in Evaluation Study

(step 8).
Finally, each client executes the command to launch the

specified game and joins the game server located at the ad-
dress and port number decided upon by the host (step 9).

3.2 Selection Algorithm
As mentioned above, the host runs the set of client data

through several steps in order to choose the best server for
this particular set of clients. There are two main steps in
the selection algorithm.

The first step is responsible for culling the data by identi-
fying and removing any problematic servers. The first phase
of this step insures that the server selected comes from a
valid set of servers. For example, if one client fails to re-
port a ping for a certain server because it cannot be reached
from the client, this algorithm is responsible for removing
the server in question from the set of possibilities. Another
phase removes servers that do not have enough empty player
slots to host the number of players currently looking for a
game. For example, if the host is searching for a game server
to support 8 clan members, a server with a maximum player
value set to 6 is discarded as well as a server that has 10
out of a maximum of 16 players. The last phase prunes the
server list based on the game options initially selected by the
host. For example, if the game preference is for Deathmatch
on the Tokara Forest map, all servers running Capture the
Flag servers or the Flux2 map are discarded.

After the first step, each entry in the culled server list
meets the requirements specified by the host. The second
step in the game server selection algorithm is responsible for
deciding which server from the culled list is the best for the
players.

In order to illustrate some of the many possible algorithms
for choosing the best game server, assume a host considering
the best game server for eight clients, each with ping times
to game servers A, B and C as shown in Table 2.

Player Server A Server B Server C

1 24 74 95
2 17 62 89
3 41 100 92
4 35 51 88
5 18 84 96
6 27 44 87
7 30 122 93
8 272 71 94

Avg 58.0 76.0 91.8
Stdev 86.8 25.7 3.4

Table 2: Example Ping Times (in ms) for Eight Play-
ers and Three Servers

An algorithm that chooses the lowest average ping time
will choose server A. The average ping time of 58 ms is
certainly playable on average, but player 8 with a ping time
of 272 is going to have a difficult time playing the game.

An extension of the lowest average ping time is to pick a
maximum threshold and the game server chosen must fall
under the thresholds for all clients. Assume the maximum
threshold is 150, meaning that any server which returns a
ping greater than 150 for any of the clients is discarded.
Under these conditions, Server A will be removed from con-
sideration and instead Server B with be selected.

Another possible solution would be to opt for fairness and
choose the server which has the smallest deviation amongst
the client pings. In this case, Server C with the lowest stan-
dard deviation among client pings would be selected.

Currently, our system uses the straightforward selection
of the server with the lowest average ping time of all the
clients. Implementation and evaluation of possibly better
algorithms, as suggested above, are left as future work.

The overhead of a server selection algorithm compared
with the state of the art should consider additional process-
ing, extra network capacity and added latency. For process-
ing overhead, with careful coding, the host can process the
ping lists for each client once, building a hash table or even
an array indexed by game server ID, and then removing and
selecting the best server in one more pass. The overhead for
this is O(C × S) where C is the number of clients that wish
to play together and S is the number of game servers from
which to choose. For network overhead, the host sends only
a few packets to each client and the ping information gath-
ered by each client can be aggregated and sent to the host in
a few packets, so O(C). For added latency, there are several
additional round-trip times required from client to the host,
O(C), but this is negligible compared to the delay for the
last client to finish pinging all game servers.

4. EVALUATION

4.1 Setup
To test the accuracy of our multiple player, game server

selection system, four players from around the world vol-
unteered to run our software client locally with the goal of
finding the best Quake III server for all of them to play on
simultaneously. Table 1 depicts the basic player statistics.

Around 14:00 Eastern Standard Time, each volunteer con-
nected their client to the game server selection host run-
ning on the PC at IP 130.215.28.221 (located at Worcester
Polytechnic Institute (WPI) in Worcester, Massachusetts,
USA).2 As detailed in Section 3, upon initiation of the four
connections, the host instructed the clients to gather game

2Information on the WPI campus network can be found at
http://www.wpi.edu/Admin/Netops/MRTG/.

Figure 3: Scatter Plot of Game Server Ping Times

Figure 4: Cumulative Distribution Function of
Game Server Ping Times

server information and send it to the host, processed the
game server information, selected the best server and in-
structed each client to launch the game to the selected server.

The Quake III server ping times for each player were
stored at the server for further analysis, as was the IP of
the game server selected.

4.2 Results
Figure 3 depicts a scatter plot of the game server pings

(in milliseconds) for each player, with the Key representing
the ping order of the game server. The order for pinging is
the same for each client since it is provided by the Quake
III master server (master3.idsoftware.com). Broadly, the
ping values vary considerably for all players, with low-end
ping values under 100 ms and high-end ping values over
600 ms. There is considerable overlap in ping values for
most players, indicating ping values to the same game server
depends strongly upon the player location. The best server
in terms of lowest average ping time is not at all obvious.

Figure 4 depicts a cumulative distribution function (CDF)
of the game server ping times (in milliseconds) for each
player. The game server selected by the host (the game
server with the lowest average ping value) is depicted with
an arrow pointing to the server location in the distribution
for each player.

The overlap in ping distributions in the graph is clear,

Figure 5: Map Showing Locations of Players and
Selected Game Server

with player B and player C having more similar ping distri-
butions than players A and D. This is somewhat surprising
given the geographic proximity of players A and D. Most of
the server ping times for player A are quite low, with over
50% being under 100 ms. Players A and D have high server
ping times with even the lowest server pings being over 200
ms.

The best game server chosen for the game by the host is in
the lower 50th percentile in server pings for all players. De-
spite player D having the highest distribution of ping times,
the selected game server has a lower ping time for player D
than it does for player A. The best game server in terms
of lowest average ping time happens to be the overall best
game server for player A. This illustrates the potential un-
fairness of an algorithm that only considers lowest average
ping time.

Method Average Ping Selection Time

Manual Best 202 ms 6400 seconds
Manual First 531 ms 320 seconds

Automatic Best 202 ms 30 seconds

Table 3: Comparison of Automatic versus Manual
Server Selection

Through the use of domestic and international WHOIS
databases, the locations of each player’s DNS server and the
chosen game server’s DNS were mapped to their respective
cities. These locations were then plotted onto a world map
in order to visualize the geographic separation of the players
and the location of the resulting server chosen by the host.
The game server selected as best resided in New York City,
NY, USA. Figure 5 depicts the geographic location of the
four players and their best game server.

It is difficult to compare the performance, in terms of ac-
curacy and time, of the above approach, call it Automatic
Best, to the manual approach of game server selection, since
the time required for manual selection and the accuracy ob-
tained varies greatly across users. However, in an attempt
to illustrate the potential benefits of the proposed automatic

approach, consider two mechanisms for manual selection of
a game server for multiple players. The first, called Manual
Best uses the process described in Section 2 to manually find
the server with the lowest average ping time. The second,
called Manual First, tries to more rapidly find a game server
by examining only the top game server choice for each player
and selecting the server that has the lowest average ping
time. Assume a particular server can be found by sorting a
list and scanning in about a second and that players make
no mistakes in their manual computation. Table 3 depicts a
comparison of the performance for these three approaches.

The automatic approach described in this paper provides
the lowest average ping time in a relatively short amount
of time. Both manual methods take considerably longer
than the automatic method. Even the Manual First method,
arguably the fastest manual method a group of players would
use, takes about ten times longer than the automatic method
and selects a game server with a considerably higher average
ping time.

5. SUMMARY
The increasing growth of online games has brought with

it the desire for more people to play games together at the
same game server. Many games have numerous game servers
from which to choose and the choice of game server matters,
both for type of game and for overall game performance.
Unfortunately, current game server browsers only provide
support for individual players, lacking the means to share
information among multiple players. Players wishing to play
together must manually coordinate the game server browser
data via some external means, a tedious and error-prone
process.

This paper presents a game server browser architecture,
with corresponding system implementation, that supports
game server selection for multiple players that wish to play
together on the same game server. One player runs a mas-
ter process as a host, while the other players connect to the
host with their corresponding clients. The host instructs the
clients to gather game server information from their individ-
ual client locations, gathers and processes the client data,
selects the best performing game server among all the valid
choices, and provides instructions for the clients to launch
the game at the selected game server.

Preliminary evaluation illustrates the challenges in manu-
ally coordinating game servers and highlights how the multi-
ple player approach to game server selection can work. Fur-
ther evaluation of server ping times for multiple players may
yield additional insights into overall server performance.

6. FUTURE
The current selection algorithm decides the best server

based on the lowest average ping time (i.e. the fastest).
More appropriate algorithms may be lowest variance in ping
times (i.e. the fairest), or lowest variance in ping times with
upper thresholds on a maximum tolerable ping time (i.e. the
fairest with acceptable performance). The best algorithm
may depend upon the specifics of the game (i.e. Quake II
might require a different algorithm than Doom 3). Given
the differences in latency requirements for some classes of
games [8], it is even more likely the best algorithm depends
upon the game genre type (i.e. a real-time strategy game,
such as Age of Mythology or Warcraft III, might require a

different game server selection algorithm than a first person
shooter, such as Quake III or Return to Castle Wolfenstein).
In addition, the proposed algorithm could be modified to
take into account the impact of the players on the chosen
server, since the performance of the server could degrade if
a large number of clients suddenly connected and started to
play.

The proposed architecture uses a centralized solution, where
the host node handles the entire server selection procedure
for all the clients that wish to play together. In general,
centralized solutions are not fault tolerant in that server se-
lection will fail if the host node fails during the selection
procedure. Also, the proposed centralized solution will not
scale if, say, thousands of players want to play a game to-
gether (assuming a game server could support that many
players). In addition, the clients need to be manually in-
formed of the IP address of the host node, which can be
cumbersome at best and does not scale if the host must
communicate this IP address externally to each client.

Improvements to single player server selection were pro-
posed by Chambers et al. in [3]. Instead of QStat, their
approach uses geographic mapping and latency estimation
tools to make single player server selection more accurate
and efficient (in terms of network packets). Combining these
single player server selection techniques with the multiple
player server selection techniques presented here could be
interesting future work.

7. REFERENCES
[1] G. Armitage. An Experimental Estimation of Latency

Sensitivity in Multiplayer Quake 3. In Proceedings of
the 11th IEEE International Conference on Networks
(ICON), Sept. 2003.

[2] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,
E. Agu, and M. Claypool. The Effects of Loss and
Latency on User Performance in Unreal Tournament
2003. In Proceedings of ACM Network and System
Support for Games Workshop (NetGames), Sept. 2004.

[3] C. Chambers, W. chang Feng, W. chi Feng, and
D. Saha. A Geographic Redirection Service for On-line
Games. In Proceedings of the 11th ACM Multimedia
Conference, Nov. 2003.

[4] S. Jankowski. QStat - Real-time Game Server Status.
[Online] http://www.qstat.org/.

[5] S. McCreary and k claffy. Trends in Wide Area IP
Traffic Patterns: A View from Ames Internet
Exchange. In Proceedings of ITC Specialist Seminar on
Measurement and Modeling of IP Traffic, Sept. 2000.

[6] J. Nichols and M. Claypool. The Effects of Latency on
Online Madden NFL Football. In Proceedings of the
14th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video
(NOSSDAV), June 2004.

[7] L. Pantel and L. C. Wolf. On the Impact of Delay on
Real-Time Multiplayer Games. In Proceedings of the
Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV), May 2002.

[8] N. Sheldon, E. Girard, S. Borg, M. Claypool, and
E. Agu. The Effect of Latency on User Performance in
Warcraft III. In Proceedings of ACM Network and
System Support for Games Workshop (NetGames),
May 2003.

