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ABSTRACT

Streaming video applications need to respond to congestion
in the network by deploying mechanisms to reduce their
bandwidth requirements under conditions of heavy load. In
reducing bandwidth, video with high motion will look better
if all the frames are kept but the frames have low quality,
while video with low motion will look better if some frames
are dropped but the remaining frames have high quality. In
this paper, we present a content-aware scaling mechanism
that reduces the bandwidth occupied by an application by
either dropping frames (temporal scaling) or by reducing
the quality of the frames transmitted (quality scaling). We
have designed a streaming video client and server with the
server capable of quantifying the amount of motion in an
MPEG stream and scaling each scene either temporally or
by quality as appropriate, maximizing the quality of each
video stream. User studies show that our content-aware
scaling can improve perceived video quality by as much as
50%.

1. INTRODUCTION

In times of network congestion, the dropping of frames by
a router may seriously degrade multimedia quality since the
encoding mechanisms for multimedia generally bring in nu-
merous dependencies between frames [4]. For instance, in
MPEG encoding, dropping an independently encoded frame
will result in the following dependent frames being rendered
useless since they cannot be displayed and would be better
off being dropped also rather that occupying unnecessary
bandwidth. A multimedia application that is aware of these
data dependencies can drop the frames that are the least im-
portant much more efficiently than can the router [2]. Such
application specific data rate reduction is called media scal-
ing.

Media scaling techniques for video can be broadly catego-
rized as follows [1]:

e Spatial scaling: In spatial scaling, the size of the frames
is reduced by encoding fewer pixels and increasing the
pixel size, thereby reducing the level of detail in the
frame.

o Temporal scaling: In temporal scaling, the applica-
tion drops frames. The order in which the frames are
dropped depends upon the relative importance of the
different frame types.

o Quality scaling: In quality scaling, the quantization
levels are changed, chrominance is dropped or com-
pression coefficients are dropped. The resulting frames
are lower in quality and may have fewer colors and de-
tails.

It has been shown that the content of the stream can be an
important factor in influencing the choice of the preferred
scaling technique (i.e. temporal, spatial or quality) [1]. For
instance, if a movie scene has a lot of motion and had to
be scaled then it would look better if all the frames were
played out albeit with lower quality. That would imply the
use of either quality or spatial scaling mechanisms. On the
other hand, if a movie scene has little motion and needed to
be scaled it would look better if a few frames were dropped
but the frames that were shown were of high quality. Such
a system has been suggested in [3] but the quantitative ben-
efits to multimedia quality for the users has yet to be deter-
mined. Other techniques for multimedia scaling have been
proposed, which operate at the network layer or the applica-
tion layer or at both the layers. Unfortunately, none of the
techniques take into account the content of the video when
scaling bandwidth.

2. APPROACH

In order to successfully develop an adaptive content-aware
scaling system, we developed an automated means of mea-
suring the amount of motion in the stream in real-time and
then integrated this with a filtering system. The whole sys-
tem was then capable of making content-aware decisions in
choosing the scaling mechanism to use for a particular se-
quence of frames. We concentrate on video only since an au-
dio stream takes much less bandwidth than a video stream,
and, being more important than the video stream, is typi-
cally not scaled.

In the next three subsections we describe the motion mea-
surement, the filtering mechanism and describe the func-
tionality of the full system, respectively.

2.1 Motion Measurement

‘We have used MPEG video streams to explore our approach.
The MPEG video compression algorithm relies on two ba-
sic techniques: block-based motion compensation for reduc-
tion of temporal redundancy and transform domain-(DCT)
based compression for reduction of spatial redundancy [4].
Motion-compensated prediction assumes the current picture



100

_ 80f R
S +
g 1
8
5 60 - i 1
] +
= + Low Motion
3 + High Motion
£ wf + p
g -,
8 +

20 - + j: B

0 | | | | | | |

0 2 4 6 8 10 12 14 16

Changed blocks

Figure 1: Motion Measurement

can be modeled as a translation of the picture at some previ-
ous time. In the temporal dimension, motion-compensated
interpolation is a multi-resolution technique: a sub-signal
with a low temporal resolution (typically 1/2 or 1/3 of the
frame rate) is coded and the full-resolution signal is obtained
by interpolation of the low-resolution signal and the addition
of a correction term.

A typical MPEG stream contains three types of frames:
Intra-encoded frames(I), Predicted frames (P) and Interpo-
lated frames (B-for Bidirectional prediction). Each frame is
further decomposed into 16x16 blocks called macroblocks,
the basic motion-compensation unit. Our system uses the
percentage of interpolated macroblocks in the B-frames as
a measure of motion. A high number of interpolated mac-
roblocks implies that a greater portion of the frame is similar
to frames that are already existing in the stream (i.e. less
motion) and a low number of interpolated macroblocks im-
plies that there are a greater number of changes between
frames (i.e. more motion).

To test the effectiveness of this measure of motion we con-
ducted a pilot study. We encoded 18 video clips', each 10
seconds long and containing no scene changes. The frame
size was 320x240 with a GOP of 10 frames (IPBBPBBPBB).
For each clip we divided the frames into 16 equal blocks
and counted the number of blocks whose content visually
changed during the clip. The percentage of interpolated
macroblocks in the MPEG clip was then computed using
mpeg_stat, an MPEG analysis tool. Figure 1 shows the graph
obtained when we plot the percentage of interpolated mac-
roblocks against the number of blocks in which changes were
observed when viewing the video clips. The x-axis shows the
number of blocks that were observed to change during the
movie clip and the y-axis shows the percentage of interpo-
lated macroblocks for the corresponding clip. Movies that
had a higher number of blocks that changed (implying more
motion) have a lower percentage of interpolated macroblocks
and those with a lower number of changed blocks (implying
less motion) have a high percentage of interpolated mac-
roblocks. Although coarse, this measure of motion seems to
provide information on visual motion for making decisions
regarding scaling policies. Also, the motion measurement
and scaling in our system are in two different modules, so
our measure of motion could be replaced with an alternate

All video clips used in this study can be downloaded from

http://perform.wpi.edu/downloads

Table 1: Scale Levels for User Study 1

[ Type | Level | Method | Fps | Bwidth(%) |
None N/A N/A 30 100
Temporal 1 No B 13 70
Temporal 2 No P or B 5 11
Quality 1 Q=7 30 65
Quality 2 Q=31 30 10

Table 2: Scale Levels for User Study 2

[ Type | Level] Method | Fps | Bwidth(%) |

None N/A N/A 30 100
Temporal 1 No alternate B | 21 85
Temporal 2 No B 13 70
Temporal 3 No P or B 5 11
Quality 1 Q=14 30 85
Quality 2 Q=7 30 65
Quality 3 Q=231 30 10

measure of motion, if the new measure was found to be more
effective.

For our system, we categorize the sequence of frames into
two categories, low motion and high motion. Sequences hav-
ing greater than 45% interpolated macroblocks are classified
as low motion and those having less than 45% are classified
as high motion. This classification may be made more fine
grained as the need arises. Based on pilot studies, we com-
pute the motion value for every 4 frames served. Further
evaluation of our measure of motion we leave as future work.

2.2 Filtering Mechanisms

We extend the filtering system in [5] to integrate it with our
content-aware scaling system. For temporal scaling we use
the media discarding filter that has knowledge of frame types
(eg. I, P or B) and can drop frames to reduce the frame rate
thereby reducing the bandwidth. For quality scaling, we use
the re-quantization filter. It operates on semi-compressed
data, i.e. it first de-quantizes the DCT-coefficients and then
re-quantizes them with a larger quantization step. As quan-
tization is a lossy process the bit-rate reduction results in a
lower quality image.

Table 1 shows the different scales and their corresponding
frame-rate and bandwidth for experiments for the first user
study. Since we compare temporal scaling and quality scal-
ing in our first user study it is important that the scale lev-
els have similar post-filter bandwidth. The first level shows
the clips at encoded quality and frame rate (30 frames per
second). We then have two levels each of temporal and qual-
ity scaling. Each temporal scaling method corresponds to
a quality scaling method with a similar bit-rate reduction.
For the second set of experiments (user study 2) we increase
th number of scale levels to four.

2.3 Adaptive Content-Aware Scaling System
Having evaluated the benefits of content-aware scaling on
the perceptual quality of video streams that have consistent
motion characteristics, we designed and implemented the
adaptive content-aware scaling system.



Figure 2 shows the sequence of steps that take place in the
system. When the server is activated it waits for a connec-
tion on a predefined port number. The filter module also
listens for control messages at a different port number upon
activation (Step 1). When the user at the client side wishes
to play a video, the client sends a request to the server with
the name of the MPEG file (Step 2). Upon receiving the re-
quest the server reads the file off the disk, packetizes it and
passes it on to the filter module (Step 3). In the absence of
congestion the filter module simply forwards these packets
over the network on a UDP connection to the client (Step
13).

In case of network loss the network module on the client side
sends a control message to the server indicating a reduction
in available bandwidth. The server then invokes the motion
measurement module to obtain the amount of motion in
the video scene being served at that particular instant of
time (Step 5). Depending upon the amount of motion the
server invokes the appropriate filter to reduce the bandwidth
occupied by the stream (i.e. quality filter for a high motion
scenes and the temporal filter for a slow motion scene) (Steps
6 through 11). The system uses 4 distinct scaling levels as
shown in Table 2.

(1) ACTIVATE SERVER AND FILTER
(2) RECEIVE MOVIE REQUEST FROM CLIENT
(3) while not (end_of_file(movie_file)) {
(4) PARSE AND SEND TO FILTER MODULE
(5) if (congestion) MEASURE MOTION
(6) if (highmotion)
(7) INVOKE QUALITY FILTER
(8) SEND QUALITY SCALED

)

9 else

(10) INVOKE TEMPORAL FILTER
(11) SEND TEMPORALLY SCALED
(12) else

(13) SEND FULL QUALITY FRAMES
(14) }end of while

Figure 2: Server Algorithm

3. EXPERIMENTS

We conducted two user studies in order to evaluate the ef-
fectiveness of our adaptive scaling system. In the first user
study we evaluate the potential benefits of content-aware
scaling and in the second user study we evaluate the poten-
tial benefits from our adaptive content-aware scaling system
for streams having variation in their motion characteristics
and for different network bandwidth fluctuation rates. Both
user studies were conducted on Intel P3 600 MHz processor
systems with 128 MB of memory running Linux 2.2.14. The
video clips were present on the local hard drives of each of
the systems so that actual network conditions did not in-
fluence the video quality and instead, induced network load
could be controlled by our system. The users rated the clips
on a scale of 1 to 100 with 100 being the highest quality.

For the first user study, we encoded 18 MPEG video clips
from a cross-section of television programming. All the clips
were approximately 10 seconds in duration and did not have
scene changes in order to have consistent motion character-
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Figure 3: Low Motion Clip (70% Interpolated Mac-
roblocks)

istics. Using our measure of motion, we categorized these
clips as having either high motion or low motion. We se-
lected two clips from each category, and each of the four
video clips was shown with the following five scaling types
and levels (as shown in Table 1): full quality; no B-frames
(temporal scaling, level 1); no B-frames or P-frames (tempo-
ral scaling, level 2); re-quantization factor set to 7 (quality
scaling, level 1); and re-quantization factor set to 31 (quality
scaling, level 2).

For the second user study, we encoded 2 clips with varied
motion characteristics. Each of the clips was approximately
25 seconds in duration and had one scene change where a
transition from low motion to high motion or vice versa took
place. Depending upon the amount of motion in the scene
and the available bandwidth the system automatically se-
lected the most appropriate scaling technique.

4. RESULT ANALYSIS

In this section we present the results of our evaluations of
the content-aware scaling system and the adaptive content-
aware scaling system.

4.1 Content Aware Scaling

Figure 3 shows the graph we obtain when we plot the user
perceived quality against the different scaling levels for a
low motion clip of four men talking at a bar. This clip has
an average of 70% interpolated macroblocks over the entire
10 second duration. We observe that temporal scaling does
consistently better than quality scaling for the low motion
clip. We also observe that with quality scaling the user
perceived quality drops linearly but with temporal scaling
the perceived quality drops more rapidly as the frame rate
reduces. We suspect there is a threshold below which users
find the perceived quality unacceptable, and when the frame
rate drops below this threshold smooth movement is lost.
We expect this number to be between 4 to 8 frames per
second, and we are currently working on more fine grained
scaling levels to accurately determine this frame rate.

Figure 4 shows the graph that we obtain for a high motion
clip of a man riding a horse as he tries to catch a bull. It has
27% interpolated macroblocks on an average over the whole
clip. As expected, we observe that quality scaling performs
consistently better than temporal scaling. We also observe
that the drop in user perceived quality for temporal scaling
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Figure 4: High Motion Clip (27% Interpolated Mac-
roblocks)
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Figure 5: Low-High Motion Clip with Bandwidth
Changes Every 2s

level 2 is not as pronounced as in the previous graph proba-
bly because the users found temporal scaling as a whole (and
not just for low frame rates at level 2) to be inappropriate
for high motion videos.

4.2 Adaptive Content-Aware Scaling

Figure 5 shows the graphs we obtain when we plot the per-
ceived quality of the Low-High motion clip (a scene from a
talk show (low motion) followed by a car commercial (high
motion)) against different scaling mechanisms for varying
bandwidths. In the graphs, perceived quality is plotted on
the y-axis and scaling mechanisms are plotted on the x-axis.
On the x-axis, the column at None shows the average per-
ceptual quality value for the clip at full quality without any
scaling. The column at Quality shows the average percep-
tual quality when the clip is quality scaled. The column
at Temporal shows the average perceptual quality when the
clip is temporally scaled and the column at ACA shows the
perceptual quality when the clip is adaptive content-aware
scaled.

Figure 5 shows the graph obtained when bandwidth changes
every 2 seconds for the clip. The 90% confidence interval
for None is [78.4%-81.6%)], for Quality is [55.8%-62.5%)], for
Temporal is [49.5%-56.4%] and for ACA is [66.1%-72.6%).
There is an almost 30% improvement in the perceptual qual-
ity of the clip when using adaptive content-aware scaling
compared to the case where the stream is scaled without
regard to the content of the stream.

We found similar results for a low-to-high motion clip and
for bandwidth changes every 500ms but do not show the
results here due to space constraints.

5. CONCLUSIONS

In this paper we have presented an application level solu-
tion to adapt to reduced bandwidth in the event of network
congestion. We have built an adaptive system that takes
into account the content of the video stream when choosing
the scaling technique in order to have the minimum possible
drop in perceptual quality for the end user. The system per-
forms the scaling operations in real-time as the video stream
is served to the client. We find that using content-aware
scaling can improve user perceived quality by as much 50%
for clips that have consistent motion characteristics over the
entire duration of the clip.

In our work we simulate the variations in available network
bandwidth by using the bandwidth distribution function.
By developing a more accurate function to model network
bandwidth we may get a better insight into the performance
on this system on the Internet. Also, at any one point of
time, we only use one scaling method (either quality or tem-
poral). There may be a larger benefit to perceptual quality
with hybrid scaling (i.e. combining temporal scaling with
quality scaling). This could be specially useful when the
amount of motion does not strictly fall into either the high
or low categories.
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