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A Survey and Taxonomy of Latency Compensation

Techniques for Network Computer Games

SHENGMEI LIU, XIAOKUN XU, and MARK CLAYPOOL, Worcester Polytechnic Institute

Computer games, one of the most popular forms of entertainment in the world, are increasingly online mul-

tiplayer, connecting geographically dispersed players in the same virtual world over a network. Network

latency between players and the server can decrease responsiveness and increase inconsistency across play-

ers, degrading player performance and quality of experience. Latency compensation techniques are software-

based solutions that seek to ameliorate the negative effects of network latency by manipulating player input

and/or game states in response to network delays. We search, find, and survey more than 80 papers on latency

compensation, organizing their latency compensation techniques into a novel taxonomy. Our hierarchical tax-

onomy has 11 base technique types organized into four main groups. Illustrative examples of each technique

are provided, as well as demonstrated use of the techniques in commercial games.
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1 INTRODUCTION

The computer games market was worth more than $150 billion globally in 2019 and is expected
to grow about 13% per year from 2020 to 2027 [57]. There are about 2.7 billion computer gamers
worldwide [67] who are increasingly playing games online. Online games are estimated to reach
$196 billion in revenue by 2022 and are one of the fastest-growing industries in the world [72].

Although many factors can affect a player’s gameplay quality of experience, multiplayer net-
work games—where physically separated players simultaneously interact in a shared, virtual game
world—must overcome the challenges posed by computer networks: limited bitrates, lost game data
from dropped packets, and latency from sending game information from one computer to another.
Although increased capacities can overcome bitrate limitations and reduce packet loss, latency re-
mains a challenge for network games and can never be eliminated entirely. Latency determines
not only how players experience gameplay but also how network games must be designed and
implemented to mitigate the effects of latency and meet player expectations. Unchecked, latencies
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can degrade both player performance (e.g., lower game score) and quality of experience (e.g., less
fun).

For multiplayer network games, the canonical game state is typically controlled by an authori-
tative server, and each player is on a separate client computer with a copy of the game state. The
clients capture and send player actions to the server, which updates the game world appropriately
and sends the new game state back to each client. The time it takes from when the player pro-
vides input until the new game state is rendered is latency in this article (colloquially called lag by
gamers). Thus, a primary impact of latency is degraded responsiveness for the player in that there
is an observable delay between player input and resulting game state update. In addition, player
input and game update messages take time to propagate and process before all client and server
states are the same. Thus, another impact of latency is reduced consistency between the game states
at the clients and the game state at the server.

Latency compensation techniques are software algorithms that run on the game client or game
server (or both) that try to mitigate the impact of latency on the players. Such techniques might
improve responsiveness or increase consistency (or both) but often sacrifice one for the other (i.e.,
increased consistency at the cost of reduced responsiveness and vice versa). The effectiveness of
the techniques depends upon many factors, including but not limited to the game to which they
are applied, the network conditions between clients and servers, and the familiarity and skill of
the players with the game.

Understanding what latency compensation techniques are effective and for what games and
which network and game conditions can be helpful for (1) game developers and game system
developers who want to improve the multiplayer network game experience, and for (2) researchers
who seek to improve upon existing techniques. Such understanding can be gained through a survey

of latency compensation techniques that collates information to provide an overview of existing
techniques—or, even better, through a taxonomy that categorizes latency compensation techniques
to illustrate the relationships different techniques have in common and organize the information
so as to make accumulated survey information accessible based on a user’s need.

An early, often cited de facto survey of latency compensation techniques by Bernier [10] de-
scribes a few techniques in detail, but the survey is more than 20 years old and does not encom-
pass the full set of techniques developed today nor describe their use in modern games. A survey
of latency compensation techniques by Jiang et al. [71] provides for only two types of latency
compensation techniques (synchronization and optimistic) and is more than 15 years old, so it
may not represent techniques developed since. A more recent survey by Briscoe et al. [13] surveys
techniques to reduce network latency but includes only techniques at the systems level and with-
out specific attention to computer games. We are not aware of any other surveys or taxonomies
for latency compensation techniques for multiplayer network games.

This work provides a survey in the form of a literature review of peer-reviewed publications
on latency compensation techniques for computer games and similar interactive media. We began
with a core set of known (to us) papers on latency compensation techniques, then expanded our
pool via following forward and backward (in time) citations to these papers and searching Google
Scholar. This yielded more than 80 peer-reviewed publications that dealt with latency compen-
sation for games. We used these 80+ papers as the foundation for a novel taxonomy of latency
compensation techniques, divided into four main groups (feedback, prediction, time manipulation,
and world adjustment), each further broken down into 11 technique types: concealment, exposure,
self-prediction, interpolation, extrapolation, speculative execution, incoming delay, outgoing de-
lay, time warp, control assistance, and attribute scaling.

Our survey further identifies the games, game genres, and methods of evaluation for each pa-
per, showing that more than half of the papers do not include evaluations with users and about
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20% have no evaluation at all. As shown by others [108, 122, 136, 152], latency compensation algo-
rithms must be tested and then evaluated to determine their effect. Thus, our work also provides
an indication as to where additional work might be done to assess the efficacy of techniques over
a broader range of games and game conditions.

It is believed that many latency compensation techniques are implemented into modern multi-
player network games. Unfortunately, as is typical of much commercial software, computer games
are usually closed-source and implementations are not specified. However, we have located 20 pre-
sentations and blogs from commercial game developers that indicate their latency compensation
approaches for their games. We have categorized these using our taxonomy and provided links as
specific evidence of latency compensation techniques used in practice.

The main contributions of this work include the following:

• Examples illustrating the main effects of latency on multiplayer network games: responsive-

ness and consistency.
• A collection of 85 peer-reviewed research papers that deal with latency compensation, pro-

viding information on type of technique, evaluation method, game and game genre evalu-
ated, and latency range studied.
• A visual depiction of a taxonomy for latency compensation techniques, showing a hierarchi-

cal representation of techniques grouped by similarity.
• Definitions for each technique (“node”) in the taxonomy.
• A visual example for each “leaf” in the taxonomy, illustrating the application of each tech-

nique to a computer game.
• Identification of 20 presentations and blogs by commercial game developers detailing the

latency compensation techniques applied to their games.

Section 2 describes our methodology to survey peer-reviewed research papers on latency com-
pensation techniques. Section 3 provides background information on latency, interactivity, and
games. Section 4 presents our taxonomy, and Section 5 lists presentations and blogs that provide ev-
idence of latency compensation in commercial games. Section 6 discusses our insights provided by
the survey and taxonomy, and Section 7 summarizes our work and presents possible future work.

2 METHODOLOGY TO OBTAIN PAPER POOL

Our objective is to provide a comprehensive review of peer-reviewed research papers on latency
compensation techniques applied to multiplayer network games and similar interactive applica-
tions. This section describes the methodology to obtain a pool of all relevant papers.

A comprehensive literature review survey examines all (or nearly all) scholarly sources related
to a specific research question or topic (in our case, latency compensation). Unfortunately, given
the general nature of representative keywords, doing an exhaustive search via the Web is prohib-
itive. For example, as of November 2020, a search in Google Scholar with the keywords “Latency
Compensation” had 144,000 results, “Latency Compensation and Interactive Media” had 24,800
results, and “Latency Compensation and Games” had 11,600 results.

Instead of a top-down search approach, we opted for a bottom-up approach. We started with
about 20 initial research papers that dealt with latency compensation. Careful review of these
papers provided the initial version of the taxonomy. From this list of papers, we expanded our ref-
erence list based on earlier works the original papers cited as well as forward (in time) references
that cited these papers. Our main selection criteria were papers that dealt with latency compen-
sation in some significant fashion. For example, a paper that proposed, discussed, or evaluated a
latency compensation technique was included, whereas a paper that merely mentioned latency
compensation in the related work section was not included.
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This yielded a pool of about 50 papers.
From there, we did a search in Google Scholar with the keywords “Latency Compensation and

Games,” sorted them by relevancy, and went through the first 200 entries, adding those that in-
volved latency compensation and did not yet have in our pool. We repeated these same steps for
the keywords “Delay Compensation and Games.”

For each paper in the pool, we categorized the work based on the initial taxonomy and recorded
relevant details on the paper. We also noted equivalency terms used in the paper to map them to
the terms used in our taxonomy. Papers were discussed by us to confirm details and placement in
the taxonomy. Whenever appropriate (i.e., a paper’s technique did not fit into our taxonomy), we
would rework categories in the taxonomy until the technique could be placed. We also examined
the list of works cited and added any missing previous references to our pool. We continued this
process until the pool was exhausted (i.e., we had reviewed and classified all latency compensation
papers known to us).

For inclusion in our list, we only considered peer-reviewed publications (i.e., not white papers,
technical reports, theses, or patents) and made no determination of the “quality” of the peer-
reviewed forum nor the quality of the paper itself. When in doubt (i.e., we were not sure if the
paper was peer-reviewed or invited), we included the paper.

For topics, we only consider multiplayer interactive systems, so this excludes the related area of
tele-operation, which can also suffer from network latency. The interested reader is encouraged
to refer to a survey by Farajiparvar et al. [44] for more information on this topic.

We also exclude literature that only focuses on local system latency (i.e., not network latency),
such as those that predict mouse movements [20], or hardware upgrades that might reduce local
latency, such as monitors with low refresh rates [132], and computer mice with high polling rates.
We also do not consider latency reduction in low-level controllers, such as latency compensation
for power oscillation damping controllers [21].

Network system techniques for reducing latency are also excluded, including but not limited to
choice of transport protocol, upgrades to link capacities, sizing of router buffers, and path routing.
The interested reader is encouraged to refer to a survey by Brisco et al. [13] for more information
on this topic.

Similarly, we also exclude techniques that reduce latency through system reconfiguration, such
as moving a game server closer to a player’s game client. Although server placement can have a
marked impact on client-server latency, such techniques are not done in-game and must be done
a priori. Moreover, moving servers often cannot be done for multiplayer games where players are
geographically separated [55] or for games deployed without the resources needed for a distributed
architecture.

Instead, the techniques surveyed assume there is a base level of latency present in the game
system (i.e., local latency), and there is an unavoidable network latency between the clients and
the server. The latency compensation techniques seek to mitigate the network latency by end-host
computations on the clients or the server (or both), adjusting anything between player input and
game actions to game state and rendered output.

3 BACKGROUND ON LATENCY, INTERACTIVITY AND GAMES

This section provides background information on game architectures (Section 3.1), latency in com-
puter game systems (Section 3.2), and the effects of latency on computer games (Section 3.3).

3.1 Game Architectures

Underlying network game architectures can be peer-to-peer, client-server, or server pool [128].
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A peer-to-peer architecture is when a player’s computer connects directly to another player’s
computer, without an intermediate game computer processing game state. Peer-to-peer configura-
tions have the advantage of not needing additional computers to support the game beyond those
used by the players. However, two significant disadvantages are the following (1) preventing play-
ers from cheating can be difficult since there is no non-player computer controlling game state,
and (2) players with less-powerful computers can often degrade the gameplay experience by all
players in the peer-to-peer group.

A client-server architecture is where one computer (the server) is the relay for all communica-
tion between player computers (the clients). While having the disadvantage of needing an “extra”
computer for the server, the client-server architecture overcomes the main disadvantages of the
peer-to-peer architecture by making it more difficult for players to cheat if the server is controlled
by the publisher and, if the server is a powerful computer, limiting the impact of under-powered
client computers on the game.

A server pool architecture has several interconnected servers that communicate as peers while
each player’s client connects to a local server. Server pools can reduce the demands on any one
server as the number of game clients increase, but they have additional complexity in sharing game
state information and, most relevant to our work, can add additional latency for clients connected
to one server to communicate with clients connected to a different server in the pool.

Most multiplayer network games use a client-server architecture. This architecture is popular
for network games since firewall rules can make it difficult for clients to connect to each other.
Moreover, having a single server can help a game scale with number of players while avoiding
the extra latency from server pool architectures. Last but not least, architectures with a trusted
authoritative server (e.g., managed by the game publisher) can help thwart player cheating since
the server keeps the official game state and makes all final decisions about the outcome of player
actions.

Typically, the server is at a well-known IP address and port and is public so as to be reachable
by all clients playing together in one game. In some cases, a server browser setup allows game
servers to register their individual IP addresses and ports with a central server, allowing clients
to connect to the central server and browse available game servers, the individual game servers
being differentiated based on configuration parameters (e.g., a certain game mode, map, or network
latency). Once an individual game server is chosen, the central server provides the client with the
game server IP address and port whereupon the client connects to the game server to play the
game.

Some network game architectures have one client act as the host to which the other clients
connect. Although at the network level these have peer-to-peer connections (i.e., one client com-
municates directly with another client), they can still be viewed as have a client-server architecture
in that the host acts as a server, albeit one that also acts as a client for that player.

3.2 Latency in Computer Game Systems

In general, latency in a computer game affects how long it takes from when a player acts until the
player sees/hears the results. And with computer games, there is always some latency between
player actions and game output.

Latencies around 20 to 30 ms can be noticed for interactive music [103], and even lower at
around 10 ms [68] and perhaps even 2 ms [104] for dragging-related tasks. Latencies around 50 ms
are known to affect performance in mouse-based pointing tasks [68, 96]. Latencies under 100 ms
have been demonstrated to affect game-related tasks as well, such as moving target selection and
steering [52, 95, 109].
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Fig. 1. The effects of latency on network games.

For a non-network game, the latency is from the player’s local computer and includes delays
from processing by the input devices, operating system, game and game engine, graphics cards, and
display devices. Such latency is sometimes called click to photon by gamers, referring to the time
from a mouse click until the monitor displays the result. Local latencies for games can range from
high-performance game systems with latencies around 25 ms [94] to console and TV combinations
that have latencies of more than 200 ms [66, 112].

For network games, the local system latency still impacts the player, but there is also network

latency—the round-trip time between the game client and the game server, including all network
processing on the end-hosts (the network interface cards and OS stack) and all intermediate de-
vices/hops between. The primary focus of latency compensation techniques is to mitigate these
network latencies. Network latencies can vary by several orders of magnitude, from milliseconds
for a Local Area Network (LAN) to tens of milliseconds for an intra-continental network to hun-
dreds of milliseconds for a inter-continental network. Wireless networks, such as WiFi, mobile,
and satellite, with poor network conditions can even experience seconds of latency.

For a multiplayer network game, the player is vulnerable to both network latency and local la-
tency. However, most latency compensation techniques are designed to overcome network latency
and not local latency.

3.3 The Effects of Latency on Multiplayer Network Games

Latency can make a multiplayer network computer game less responsive. Consider the example in
Figure 1(a) showing an event timeline for a network game with a client and a server, with time
progressing top to bottom. The left side shows the display on the client over this time. In this
example, the player provides input and the client encapsulates that input into a message that is
sent to the server. The server receives the message, processes the input, updates the game world,
and sends the world update back to the client. The client, upon getting the update, renders the
new world for the player on the display. The time from the player input until the resulting change
to the display is the response time. The larger the network latency, the greater the response time
and the less responsive the computer game.

Latency can also make a network computer game less consistent. Consider the example in
Figure 1(b) showing a multiplayer networked game with two clients with different latencies con-
nected to a server. The authoritative server has the true location of an avatar depicted by the green
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Fig. 2. Tradeoff between consistency and responsiveness.

circle. The avatar is moving up and to the right along the path. The server periodically sends po-
sition updates to each client. Ideally, in most game conditions, such as a race where avatars are
running together around a virtual track, the view of the game worlds on both Client A and Client
B would be the same (consistent), but because of latency they are not. Since Client A is 25 ms
away from the server, the displayed position is close to that of the server. However, since Client
B is more distant from the server at 100 ms, the displayed position is even farther away from the
actual position. The client game worlds are inconsistent with each other and the server.

This impact of latency can be visualized as in Figure 2, where consistency and responsiveness
are depicted by orthogonal axes. In this space, the best position for a multiplayer network game—
the one with the highest responsiveness and most consistency—is at the origin at the bottom left.
The farther away from the origin, the worse (i.e., the less responsive and/or more inconsistent).
Client A from the example in Figure 1(b) might appear at point A somewhat near the origin, with
Client B at point B being farther away. Latency compensation techniques seek to improve the
responsiveness or consistency (or both) in the presence of network latency, moving a client closer
to the origin. For example, one technique may improve the consistency of Client B to position
B’, whereas another may improve the responsiveness of Client A to position A’, at the cost of a
decrease in consistency.

Because there is always at least some latency with a network computer game, being at the origin
in Figure 2 is impossible. In fact, there is often a tradeoff between consistency and responsiveness.
Some latency compensation techniques designed to improve responsiveness in the presence of
latency can decrease consistency, whereas other techniques that improve consistency can make a
game less responsive.

There has been numerous studies on the effects of network latency on games, assessing the
effects of latency on both player performance and quality of experience (QoE).

For first-person shooter (FPS) games, Armitage [7] estimates that the player tolerance thresh-
old for latency for Quake 3 is about 150 to 180 ms. Dick et al. [36] show via a survey that players
generally believe that about 120 ms is the maximum tolerable latency for a network game, regard-
less of game genre, but their user study shows that players find 150 ms acceptable for the games
Counter-strike and Unreal Tournament 2003 (UT2003). Quax et al. [111] find that for UT2003 play-
ers, latency and latency jitter as low as 100 ms can degrade player performance and QoE. Amin
et al. [4] show that player experience determines the sensitivity to latency for Call of Duty, with
competitive gamers more adept at compensating for impaired conditions. Liu et al. [93] for Counter
Strike: Global Offensive find that decreasing latencies from 125 ms to 25 ms improves player accu-
racy by about 2%, score by about 15%, and QoE by about 20%.

For other genres, Pantel and Wolf [107] show that latencies of about 100 ms can affect car rac-
ing games. Fritsch et al. [53] find that players of the role-playing game Everquest 2 can tolerate
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hundreds of milliseconds of network latency. Hohlfeld et al. [63] find that players of the casual
game Minecraft are insensitive to network latencies of up to 1 second. Sheldon et al. [125] show
that some aspects of play in the real-time strategy game Warcraft 3 are not affected by even a sec-
ond of latency. Howard et al. [64] indicate that cooperation in the role-playing game Mass Effect
3 can be affected by latency of a teammate due to cascading effects on the game outcome.

Many of these studies use specific games but are intended to generalize to games from the same
genres (e.g., FPS games) [4, 7, 9, 22, 25]. However, studies using commercial games include a game
engine’s built-in latency compensation techniques, often confounding the results.

Generally, the effects of latency depend upon the game type, the player actions in the game,
and the characteristics of those actions [26, 116]. For example, games in which players take turns
are more forgiving of latency than are games with tight interactivity. Claypool and Claypool [26]
suggest that a game action’s sensitivity to latency can be classified by precision and deadline—
higher precision and tighter deadline mean more sensitivity to latency. For game combat, shooting
with a high-precision weapon is affected by latency more than shooting with a weapon with a wide
area of effect. For game navigation, driving a car around a race track is affected by latency more
than sending an avatar across a large world to explore. Additional research suggests that the effects
of latency also depend upon a player’s skill, with higher-skill players more affected by latency than
lower-skill players [93].

4 SURVEY AND TAXONOMY OF LATENCY COMPENSATION TECHNIQUES

Our methodology for obtaining peer-reviewed research papers on latency compensation tech-
niques yielded 85 peer-reviewed publications that are surveyed and taxonomized in this section.
Table 1 provides the list of papers:

— Year is when the paper was published.
— Compensation Technique maps the latency compensation technique(s) in the paper to our

taxonomy. Note that many papers include more than one technique.
— Study Type is one of “User Study” involving human subjects, “Experiments” using games

or simulated games but no active human players, or “Case Study” with a single instance
described as a proof of concept. If the paper has no meaningful evaluation, the study type is
listed as “None.”

— Game provides the name(s) of the game(s) used in evaluation (if done). Game names are
provided for commercial games or publicly available games—custom-built games are so in-
dicated as “Custom.” Studies evaluating a task rather than a game, such as drawing [6] or
writing [98], are listed as “Task.”

— Genre is the general category to which the evaluated games belong: “FPS” (first-person
shooter), “RPG” (role-playing game), “RTS” (real-time strategy), “Casual” (also covering turn-
based games), “Fighting,” “Racing,” “Sports,” and “Arcade.” The Arcade genre also serves as a
catch-all covering games with limited game actions (and gameplay depth) and simple graph-
ics. For cases where the evaluation is an experiment with generic interaction, the genre is
listed as “Any.”

— Range indicates the network latency values evaluated, where applicable and specified.
— Users has the number of users in the evaluation, where applicable.

Figure 3 depicts our taxonomy of latency compensation techniques for multiplayer network
games. The techniques are arranged in groups based on shared characteristics. The proposed tax-
onomy is hierarchical, read from the top down, where each vertical level provides increased differ-
entiation and refinement of the indicated technique (i.e., more general on the top to more specific
on the bottom).
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Table 1. Peer-Reviewed Publications with Research on Latency Compensation for Network Games

Year Paper Compensation Technique Study Type Game Genre Range Users

1985 [70] Time Warp None N/A N/A N/A N/A
1992 [131] Latency Concealment User Study Custom N/A 0–380 ms 12
1994 [101] Extrapolation None N/A N/A N/A N/A
1998 [124] Interpolation Case Study Custom Arcade 0–2,000 ms 2
1999 [16] Extrapolation, Latency Exposure Experiment N/A N/A N/A N/A
1999 [141] Attribute Scaling, Extrapolation, Latency Exposure None N/A N/A N/A N/A
1999 [38] Extrapolation, Incoming Delay User Study MiMaze Arcade 0–100 ms 25
2000 [99] Extrapolation, Time Warp None N/A N/A N/A N/A
2000 [51] Latency Exposure None N/A N/A N/A N/A
2000 [145] Self-Prediction User Study Custom Arcade 120–300 ms 8
2000 [98] Extrapolation, Incoming Delay, Time Warp Case Study Task N/A 0–300 ms N/A
2001 [123] Extrapolation None N/A N/A N/A N/A
2001 [148] Extrapolation Experiment Custom Any Unspecified N/A
2002 [108] Extrapolation Experiment Custom Arcade, Racing, Sports 100–200 ms N/A
2002 [129] Extrapolation None N/A N/A N/A N/A
2002 [92] Incoming Delay Experiment Custom FPS 0–300 ms N/A
2003 [30] Extrapolation None N/A N/A N/A N/A
2003 [59] Extrapolation User Study Task N/A 0–480 ms 8, 18
2003 [41] Extrapolation Experiment Custom Arcade Unspecified N/A
2004 [1] Extrapolation Case Study BZ Flag FPS 100–800 ms 2, 4
2004 [100] Incoming Delay, Time Warp Experiment Custom Arcade 40– 2,000 ms N/A
2004 [130] Interpolation None N/A N/A N/A N/A
2004 [58] Latency Exposure User Study Custom Arcade 0–1,400 ms 40
2004 [150] Extrapolation Experiment Task N/A Unspecified N/A
2005 [2] Extrapolation Experiment BZ Flag FPS 200–800 ms 4
2005 [74] Latency Concealment, Self-Prediction None N/A N/A N/A N/A
2005 [126] Extrapolation, Latency Concealment, Self-Prediction Case Study Custom Arcade 0–200 ms N/A
2005 [149] Outgoing Delay Experiment Quake 2 FPS 0–400 ms 4
2006 [14] Extrapolation, Incoming Delay, Outgoing Delay, Self-Prediction Experiment Custom Any 0–500 ms N/A
2006 [71] Extrapolation, Time Warp None N/A N/A N/A N/A
2006 [91] Incoming Delay, Time Warp Experiment Quake 3 FPS 50–200 ms 2
2006 [15] Latency Concealment, Self-Prediction Experiment Custom Casual N/A N/A
2006 [144] Extrapolation, Latency Exposure, Outgoing Delay User Study Custom Sports 50–250 ms 24
2006 [61] Extrapolation Experiment Task N/A N/A 4
2006 [151] Extrapolation, Incoming Delay User Study Custom Arcade 100–800 ms 2
2006 [87] Extrapolation User Study Custom Arcade 0–3,000 ms 30
2006 [106] Extrapolation Experiment BZ Flag FPS 0–1,600 ms N/A
2007 [23] Incoming Delay, Self-Prediction User Study Task N/A 0–900 ms 18
2007 [79] Incoming Delay User Study Custom FPS 25–200 ms 10
2007 [88] Extrapolation User Study Custom Arcade 1,000–3,000 ms 37
2007 [139] Self-Prediction Experiment Task N/A 0–50 ms N/A
2008 [136] Incoming Delay User Study Custom Arcade 0– 500 ms 24
2008 [115] Extrapolation User Study Custom Arcade N/A 3
2008 [97] Control Assistance User Study Custom Arcade N/A 13
2008 [89] Extrapolation User Study Custom Arcade 0–3,000 ms 37
2008 [105] Incoming Delay Experiment Custom Any 2–40 ms N/A
2009 [152] Incoming Delay Experiment Street Fighter 2 Fighting 0–400 ms 2
2009 [65] Extrapolation, Incoming Delay User Study Custom Racing Unspecified Unspecified
2010 [122] Extrapolation, Incoming Delay, Outgoing Delay, Self-Prediction Experiment Custom Arcade 100–746 ms N/A
2010 [73] Outgoing Delay Experiment Quake 3 Arena FPS 0–150 ms N/A
2011 [8] Control Assistance User Study Custom Arcade N/A 24
2012 [75] Extrapolation Experiment Custom Any Unspecified N/A
2012 [62] Extrapolation, Incoming Delay User Study Custom Arcade 0–150 30
2012 [78] Extrapolation, Incoming Delay User Study Custom Arcade 80, 130 ms 20
2013 [121] Extrapolation, Incoming Delay, Interpolation None N/A N/A N/A N/A
2013 [147] Extrapolation User Study Quake 3, World of Warcraft FPS, RPG N/A 16, 200
2013 [127] Attribute Scaling None Custom Sports 100–200 ms N/A
2013 [146] Attribute Scaling, Incoming Delay User Study Custom Fighting 10–40 ms 20
2014 [119] Interpolation User Study Custom Arcade 125–500 ms 18
2014 [120] Extrapolation, Incoming Delay User Study Custom Arcade 50–200 ms 26
2014 [142] Control Assistance User Study Custom FPS N/A N/A
2015 [66] Control Assistance User Study Custom Arcade 10–160 ms 18
2015 [83] Speculative Execution User Study Doom 3, Fable 3 FPS, RPG 0–400 ms 41
2015 [86] Interpolation, Time Warp User Study CS:GO FPS 0–150 ms 4
2016 [54] Extrapolation Experiment Custom Arcade N/A N/A
2016 [140] Self-Prediction Experiment N/A N/A 50–100 ms N/A
2016 [43] Latency Concealment None N/A N/A N/A N/A
2016 [69] Extrapolation Experiment Custom Racing N/A 15
2017 [84] Time Warp User Study Custom FPS 0–250 ms 4
2017 [80] Self-Prediction User Study Task N/A 33–99 ms 16
2018 [90] Outgoing Delay User Study Assault Cube FPS 20– 80 ms 10
2018 [116] Attribute Scaling User Study Need for Speed, Somi, Table Tennis Arcade, Racing 0–400 ms 25, 27
2018 [85] Time Warp User Study Custom FPS 50–250 ms 12
2018 [32] Extrapolation Experiment Custom Arcade 0–300 ms N/A
2018 [24] Extrapolation Experiment Custom Racing N/A N/A
2018 [6] Self-Prediction User Study Task N/A 0–66 ms 10
2019 [82] Attribute Scaling User Study Flappy Bird Arcade 0–200 ms 12
2019 [137] Time Warp User Study Custom Arcade 0–800 ms 30
2020 [40] Extrapolation Experiment World of Warcraft RPG N/A N/A
2020 [118] Attribute Scaling User Study Flappy Bird Arcade 10–400 ms 18
2020 [117] Attribute Scaling, Control Assistance User Study Custom Arcade 0–200 ms 194
2020 [76] Latency Concealment User Study Custom FPS 25–105 ms 9
2021 [12] Latency Concealment Case Study Custom Arcade Unspecified N/A
2021 [102] Extrapolation Experiment Custom Arcade 0–100 ms N/A
2021 [18] Attribute Scaling User Study Custom Arcade 0–125 ms 23
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Fig. 3. A taxonomy of latency compensation techniques for network games.

At the top is latency compensation, grouping all latency compensation techniques.
Beneath latency compensation is the division of four classes of latency compensation: feedback,

prediction, time manipulation, and world adjustment.
Each of these classes is further differentiated by families of techniques: latency concealment

and latency exposure for feedback; self-prediction, other-prediction, and speculative execution for
prediction; time warp and time delay for time manipulation; and control assistance and attribute

scaling for world adjustment.
Some families of techniques are further refined: interpolation and extrapolation for other predic-

tion and incoming delay and outgoing delay for time delay.
Although not shown in the figure, actual implementations of latency compensation techniques

can also be differentiated based on algorithm parameters or code specifics.
Figure 3 also indicates by color and shading where the primary functionality for the compen-

sation technique resides (see the legend in the bottom left corner): Client for techniques that are
processed and displayed primarily on a player’s client computer, Server for techniques that are
primarily handled on the authoritative game server, and Either for techniques that can reside on
either the client or the server or both.

Note that individual network games can, and often do, use more than one technique.
The rest of this section proceeds to define and describe the nodes in the taxonomy, providing an

illustrative example for each “leaf” node in the picture. The examples are not necessarily the only
latency compensation technique in each leaf node but are meant to provide clarity by an example.

4.1 Feedback

Feedback provides audible or visual information to the player based on latency, without actually
changing the state of the game world.

4.1.1 Latency Concealment. Latency concealment visually masks latency from the client to the
server so as to minimize the perception of unresponsiveness. For example, a game client might
show the discharge and recoil of a weapon when the player pulls the trigger, even though the
outcome of the shot (e.g., a hit or a miss) has not been registered and recorded by the server. As
another example, a vehicle ordered to move by a player may immediately power up its engines,
kicking up dust but not actually changing positions until the server has verified that movement is
allowed.

Figure 4 depicts an example of latency concealment. On the left, at time t0 the player is ready to
act to move their avatar, the green circle. At time t1 when the player provides input at the game
client, the game responds by providing a visual effect (if this were a car, the engines might rev,
kicking up dust), but the avatar does not actually change positions pending approval from the
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Fig. 4. An example of latency concealment.

Fig. 5. An example of latency exposure.

authoritative server. At time t2, the avatar actually moves since the server approval has arrived.
The visual effect in this example conceals the latency from the client to the server by making the
move command seem immediately responsive to the player, even though the actual position does
not change until at least as long as the client-server latency.

Latency concealment includes image warping techniques that adjust the rendered image, rang-
ing from simple camera view re-projection [131] to temporally updating the animated con-
tent [12, 43, 74, 76]. These concealment techniques are often used in virtual reality headsets (called
late warp) to reduce latency for head motion to video output to help with simulator sickness, as
well as other aspects.

Burgess, Hanna, Shelly, and Katchabaw [15, 74, 126] describe the use of a software design pattern
that uses “padding” to hide latency. They make specific mention of using an animation played by
the client in immediate response to a player’s action while waiting for the latency from the server
confirmation.

Efficacy. In general, there has not been much formal evaluation of latency concealment tech-
niques. Some limited evaluation claims latency concealment can improve virtual reality head track-
ing with up to 380 ms of latency [131] and can reduce the “penalty” for in-game shooting with
80 ms of latency [76].

4.1.2 Latency Exposure. Latency exposure gives a visual indicator of the magnitude of the la-
tency from the client to the server. For example, the client may decorate the corner of a display
with a numeric value that directly reports the client’s round-trip time to the server (often called
the ping time by game players) or with “bars” that depict latency similar to those for mobile phone
signal strength (i.e., more bars is a better, lower-latency connection).

Figure 5 depicts an example of latency exposure. There are two clients, Client A and Client B,
each connected to the server in the middle. Client A has a round-trip time of 25 ms, and Client B
has a round-trip time of 100 ms. The clients’ displays expose their round-trip time latencies in
the upper corner of their respective screen, noting this as a ping value, which is term commonly
understood and used by network gamers.

Vaghi et al. [141] describe several mechanisms by which latency can be revealed to players: a
gauge showing an amount of latency, an area of uncertainty (larger with more latency), “shadows,”
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Fig. 6. An example of self-prediction.

and “ghosts” to represent the estimated position of objects based on latency, and visual emphasis
indicating when events occur in time to make the presence of latency known.

Similarly, Fraser et al. [51] describe how the uncertainty due to latency can be rendered as a
wireframe volume around an object, with the volume growing larger with an increase in latency,
similar to the area of uncertainty.

Wikstrand et al. [144] use a “shadow” to represent the estimated position of a game avatar on
the server based on the latency, similar to the shadows proposed by by Vaghi et al. [141].

Gutwin et al. [58], propose magnitude “decorators,” which are visual representations for enhanc-
ing a user’s awareness of latency. Decorator examples include numbers, translucency, color, and
even pulsing or oscillation to indicate latency.

Efficacy. In general, there are few studies that actually evaluate the benefits of latency exposure.
For the few that do, they suggest that latency exposure can improve player performance by about
25% for latencies as high as 800 ms [58] and increase player enjoyment by about a half-point on a
7-point scale for a latency of 500 ms [144].

4.2 Prediction

Prediction estimates the game state at a client without having the official game state from the server.
Prediction takes advantage of the fact that the game client has information on the game world (e.g.,
object locations, world terrain) and processing capabilities (e.g., ability to compute physics and
render the game world), providing the player with world representations before they are confirmed
by the server. The drawback with predictive techniques is that they can be wrong in that they may
not accurately represent the game world as ultimately determined by the authoritative server. In
such cases, there is inconsistency between the client game state and the server game state so that
when the client game state is inevitably corrected to align with the server game state, the fix is
noticeable and may even be jarring to the player.

4.2.1 Self-Prediction. Self-prediction predicts the game state based on player input but before
getting confirmation from the server. Self-prediction is a natural technique for game programmers
since most clients run a fully functional game engine able to incorporate player input and compute
game object interactions (e.g., physics, including collisions) without the server, and doing so can
provide immediate feedback for the player.

Self-prediction is often called client-side prediction in papers, online blogs, and player posts.
Figure 6 depicts an example of self-prediction. A time t0 on the left, the player has a view of

the game world that is consistent with that of the server (not shown). At time t1, the player has
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Fig. 7. An example of interpolation.

provided some game input (e.g., press the right arrow key) to move the green avatar to the right.
The client assumes that this movement will be allowed by the server and so renders the world
with the green avatar in the predicted location. Once the server receives and then responds to the
player input at time t2, there are two possibilities: in the first case, shown at the top, the server has
accepted the input and the green avatar’s new position is confirmed; in the second case, shown at
the bottom, the server has rejected the player input (e.g., if the avatar is blocked by another object
unknown to the client) and the client renders the world as specified by the server.

Burgess, Hanna, Shelly and Katchabaw [15, 74, 126] describe the use of a software design pattern
based on the notion of “optimism,” where a prediction on the client is assumed to be valid until the
server does the official computation and returns the results. They provide additional techniques
for synchronization and consistency checking.

Chen et al. [23] use a form of self-prediction called an echo to immediately show the player the
effects of an action, even if additional delay is incurred before the official confirmation.

Wu and Ouhyoung [145] study “look-ahead” algorithms for 3D, head-mounted displays that pre-
dict object position and orientation. They study algorithms with different prediction complexities—
simple to more complex. Also for a virtual environment with a head-mounted display, Tumanov
et al. [139] describe predictions of “poses” for a player based on the position and orientation in the
motion space.

Brun et al. [14] mention self-prediction as it affects game state consistency in multiplayer net-
work games. They provide specific context for fairness in multiplayer games, where players may
have different amounts of latency.

Le et al. [80] capture movements of the hand in a touch interface, use these movements in a
neural network, and predict the location of future touch positions. Similarly, Antoine et al. [6] use
high-frequency data gathered from a computer mouse to predict the future velocity and position.

Efficacy. Evaluation of self-prediction is fairly limited given the range of conditions to which it
can be applied. Self-prediction for steering tasks on personal computers within virtual reality and
on touch interfaces show about 15& to 20% improvement to user performance for latencies around
100 to 150 ms [6, 23, 145] with larger improvements (up to 80%) for higher latencies.

4.2.2 Other-Prediction. Other-prediction predicts the game state for objects controlled by other
players (including AI-controlled players or objects) without having the actual state information
from the server.

4.2.2.1 Interpolation. Interpolation predicts past states for objects controlled by other players
based on the current state and previously known states. For example, the position of a vehicle can
be interpolated to be in between a past known location and its current known location.

Figure 7 depicts an example of interpolation. At the left at time t0, the client displays the known
state of the game world at that time. At the right at time t2, the client has gotten an update on
the world state. At time t1 in the middle, the client interpolates the position of the green avatar
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Fig. 8. An example of extrapolation.

based on the known position in the past at t0 and the known position in the future at t2. The client
then renders this predicted state. Interpolation is typically used to visually smooth out game states
rendered on the client in cases where the visual update rate happens more often than do updates
received from the server.

Lee and Chang [86] evaluate how interpolation in the commercial FPS game Counter-Strike:
Global Offensive (Valve, 2012) improves player accuracy.

Sharkey et al. [124] describe interpolation via local perception filters that provide for a continuous
view of the game world (i.e., without any abrupt transitions) as client game states are updated with
remote user actions. As Smed et al. [130] describe, interpolation via local perception filters can be
tuned to keep predictions closer to actual game state for local players than for remote players to
keep a smooth view of the game state while mitigating the effects of latency.

Savery and Graham [121] provide a toolkit for game developers to implement interpolation,
including local perception filters and also smooth corrections to interpolate rendered game state
toward the actual game state when a client gets updates. The authors also evaluate how smooth
corrections are perceived by players compared to abrupt corrections when fixing an inconsistent
game state [119].

Efficacy. There is little formal evaluation of the impact of interpolation on users. For player
performance, interpolation may improve shooting accuracy by 2% [86] for FPS games and decrease
annoyance with game state inconsistencies by about 50% for arcade-style games [119].

4.2.2.2 Extrapolation. Extrapolation predicts future states for objects controlled by other players
assuming current behaviors continue. For example, the position of a vehicle can be extrapolated
to a future location based on its last known position and kinematic state (velocity, acceleration,
orientation, and angular velocity).

Figure 8 depicts an example of extrapolation. At the left at time t0, the client display renders the
known state of the game world at that time. In the middle at time t1, the state of the world has
been updated by the server and the client displays the green avatar’s new position, moving to the
right. At the right at time t2, the client has not (yet) gotten an update on the world state but can
extrapolate the position of the green avatar based on the last known position at time t1 and the
avatar’s velocity. The client then renders this predicted state.

Since extrapolation techniques are by far the most widely researched latency compensation tech-
nique in the literature, we provide additional details on the well-known extrapolation technique
called dead reckoning [143]. With dead reckoning extrapolation, object predictions are done with
basic kinematic physics such as the last known position, velocity, and acceleration. Assume that
pt is the position at time t and the last update for an object’s position was received at time t0. With
the simplest form of dead reckoning extrapolation, a client could assume that the location of the
object at time t1 is the same as the location of the object at time t0:

pt1 = pt0 . (1)
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� �
0 repeat
1 receive new packet from server
2 extract state update data {pos , vel , accel}
3 if seen object before then
4 update object attributes
5 else
6 add object to list
7 end if
8 for each object in list
9 update predicted position / / E q u a t i o n 3

10 end for
11 render frame on screen
12 \vspace*{ -10pt}
� �

Listing 1. Client dead reckoning extrapolation algorithm.

� �
0 repeat
1 receive input from object controller
2 update current position based on received input
3 compute predicted position based on previous {pos , vel , accel} / / E q u a t i o n 3
4 if (current position - predicted position) < threshold then
5 marshall {pos , vel , accel} data
6 send data in packet to client
7 end if
8 \vspace*{ -10pt}
� �

Listing 2. Server dead reckoning extrapolation algorithm.

Assuming a constant velocity (vt0 ), using the velocity at time t0, a slightly more sophisticated
algorithm could predict the location of the object to be

pt1 = pt0 +vt0 (t1 − t0). (2)

Adding information for a constant acceleration (a) (e.g., gravity or rocket thrust), the location
of the object could be predicted to be

pt1 = pt0 +vt0 (t1 − t0) + 1
2a(t1 − t0)2. (3)

Psuedo-code for a client using the dead reckoning extrapolation algorithm to predict an object’s
position is given in Listing 1.

The server runs a similar computation, determining what the client predicts for the extrapolated
position. If the client’s predicted position deviates by more than a pre-set threshold, the server
sends an update to the client with the correct position (as well as any updates to velocity and
acceleration). Psuedo-code for the server is given in Listing 2.

In general, units with high inertia are easy to predict (i.e., a rock rolling down a hill or a player
in freefall from an airplane), whereas models with little inertia are harder (i.e., a pixie with 360
degrees of movement freedom or an avatar that can teleport). Game-specific prediction algorithms
can even be crafted. For example, a real-time strategy game may define what it means for a unit to
“return to base.” As long as the unit continues to return to base, all clients can accurately predict
the extrapolated position over time without any updates.

The information and processing used in the extrapolated position can vary from simple to com-
plex, depicted in Figure 9 as a single dimension. Extrapolation techniques on the left use basic
physics to make a prediction, the simplest of which is the last known position and the veloc-
ity. Small increments in processing and information are required for acceleration and orientation,
with a bit more for forces (e.g., friction) and mass. In the middle, extrapolation techniques might
use higher-order information such as environmental factors, routes available for travel, or the
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Fig. 9. Extrapolation information and/or processing dimension.

intended destination of the predicted object. On the right are extrapolation techniques that con-
sider even more complex information, such as past behaviors, and complex processing such as
machine learning and full AI control of the predicted objects.

Vaghi et al. [141] identify prediction as a way to anticipate future states (e.g., the “real” position
of a ball) based on latency. Diot and Gauiter [38] implement a simple extrapolation technique for
the open source game MiMaze [37] by replaying the position of a remote object if an update is
not available when rendering. Mauve [99] describes how with extrapolation, mis-predictions may
yield unexpected game states (e.g., dead players shooting).

Wikstrand et al. [144] describe extrapolation as one of several “predictor displays,” stating that
they work best when the extrapolated positions of objects are predictable. In their pong game
implementation, they depict the extrapolation locations of paddles as shadows.

Shelly and Katchabaw [126] extrapolate the positions of server-controlled objects (e.g., an op-
ponent’s avatar) as part of their “optimistic” software design patterns to compensate for latency.
Similarly, Jian et al. [71] describe extrapolation as an “optimistic technique,” where the client com-
putes and renders the location of server-controlled objects without waiting for the latency from
the server response.

McCarty et al. [101] describe using dead reckoning for DIS (Distributed Interactive
Simulations)—an IEEE standard for multiplayer combat simulation—for a virtual flight simulator.
Mauve [98] describes dead reckoning use in DIS, including shortcomings to state consistency.

Smed et al. [129] describe dead reckoning as one of several aspects of networking in online
games both for reduction in bitrates and for mitigating latency via extrapolation. Pantel and
Wolf [108] propose extrapolations of two types: (1) positions of game objects via dead reckon-
ing, and (2) positions of an input device (e.g., a joystick) which, in their racing game, results in
moving a car to a predicted position.

Yu and Choy [148] and Zang and Georganas [150] propose adding an orientation threshold for
sending dead reckoning updates above and beyond the position threshold typically used. Hanawa
and Yonekura [61] reduce prediction errors in traditional dead reckoning by employing additional
client-side computations that give more precision (e.g., by using a Taylor expansion). Cai et al. [16]
extend dead reckoning by adapting the thresholds used to determine when to send updates based
on the area of interest and sensitivity. Kharitonov [75] proposes and Almeida and Felinto [32]
evaluate a dead reckoning extension that uses the motion patterns of the objects in addition to
simple kinematic physics.

Aggarwal et al. [1] analyze the use of dead reckoning with synchronized clocks and timestamps
to improve extrapolation accuracy after updates are received. The authors extend their ideas to
fairness for players with different latencies by equalizing errors from incorrect extrapolations [2].
Zhang et al. [151] propose using Aggarwal et al.’s dead reckoning with synchronized clocks com-
bined with incoming delay (see Section 4.3.2.1) to further reduce prediction errors. Hara et al. [62],
Ishii et al. [65], and Kusunose et al. [78] also use extrapolation combined with incoming delay,
providing a predicted position for updates outside of the incoming delay buffer. Jaya et al. [69]
adjust the dead reckoning update threshold based on an interest management profile—the closer
an entity is, the lower the threshold and vice versa.
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Duncan and Gracanin [41] propose reducing possible state inconsistency in dead reckoning
by pre-computing predicted states and sending updates before any inconsistency thresholds are
breached. Palant et al. [106] explore extrapolation variants of dead reckoning, including using
clock synchronization and a convergence algorithm that smooths out inconsistency in game states
from extrapolation errors. Brun et al. [14] consider dead reckoning in terms of how it affects
game state inconsistency for multiplayer games with different latencies for each player. Roberts
et al. [115] propose an extension to dead reckoning whereupon state updates are sent using not just
a threshold for spatial inconsistency but an accumulation of this inconsistency over time. Savery
et al. [120–122], describe extrapolation, part of prediction, as a general technique to compensate for
latency, with dead reckoning as a specific version. The authors provide a state consistency-centric
view of the game world, including requirements on state divergence and different approaches to
correct inconsistent states (e.g., smoothly or abruptly).

Li and Chen [87] extend dead reckoning by extrapolating object positions based on attraction
(inferring that some objects may want to move closer to another) and repulsion (the opposite). Li
et al. [88, 89] add the notion of personal habits, where the prediction takes into account actions
that the predicted object would likely do based on past behavior. Similarly, Schirra [123] describes
using the content of game objects to do dead reckoning using more than just position and velocity.
For example, content-based dead reckoning might use “running along a path” or “playing a wall-
pass to a team-mate” to extrapolate positions. Along these lines, Yahyavi et al. [147] consider the
physics of a player avatar in predicting a location and the player’s interest in their surrounding
environment in terms of how it affects movement. Similarly, Gao et al. [54] describe modeling a
player’s behavior and using this behavior profile to extrapolate to positions of player-controlled
objects. Their technique is combined with dead reckoning in an attempt to better predict actual
avatar location in a pong game. Chen and Liu [24] extend traditional dead reckoning to an ex-
trapolation technique that also uses human behavior and the virtual environment factors (e.g., the
terrain) in doing predictions.

Duarte et al. [40] propose using machine learning to infer if dead reckoning is able to accurately
extrapolate positions—if not, another machine learning algorithm is used to make the predictions.

Cronin et al. [30] examine how prediction techniques (e.g., dead reckoning) may be incompatible
with cheat-detection algorithms since extrapolation may be exploited in some cases.

Efficacy. Studies evaluate latencies ranging from a low of about 100 ms [120, 144] to a high of
several seconds [88, 89]. Most of the evaluations of extrapolation use simulations or traces to as-
sess consistency, measured as the deviation from the predicted state on the client to the actual
state on the server. There are few evaluations of the impact of extrapolation on player perfor-
mance or QoE. In general, extrapolation studies with evaluation find that in the presence of la-
tency, extrapolation reduces inconsistency between client game states and the server game states
[1, 24, 32, 40, 41, 54, 61, 87, 106, 115, 122, 147, 150, 151]. The metrics for improvement reported
vary, such as reducing inconsistency down from 5% to 0.5% for about 300 ms of latency [108, 122]
to making under 100 ms of network latency unnoticeable [38] to improving consistency 10-fold
from 100 to 200 ms of latency. Note that instead of improving responsiveness or reducing consis-
tency, some research proposes using extrapolation to reduce network bitrates [16, 69, 75, 147, 148]
since network messages with object updates do not need to be transmitted if clients can correctly
extrapolate object positions.

The relatively few evaluations that involve users show that in addition to improving consis-
tency, extrapolation also improves player QoE and fairness across players (exact amounts are not
specified) [2, 62, 65, 120].

ACM Computing Surveys, Vol. 54, No. 11s, Article 243. Publication date: September 2022.



243:18 S. Liu et al.

Fig. 10. An example of speculative execution.

4.2.3 Speculative Execution. Speculative execution computes the game world state based on
possible player input before it has actually happened and adopts this pre-computed state if/when
the input is provided. This enables the local game client to respond to player input immediately,
matching the current game world to the pre-computed world, without waiting for the round-trip
time to the server.

Figure 10 depicts an example of speculative execution. On the left at time t0, the game client
depicts the current game world state. At the top of the figure, the server has pre-computed and
provided two possible game states that could exist at time t1, named State A and State B. These
two states are based on possible input that the player could provide to the game at time t0—in
this example, the player can either move the green avatar to the top right of the game world
(resulting in State A) or to the bottom left of the game world (resulting in State B). Both of these
states have been transmitted to the player before the player has provided input. When the actual
input is provided, the state that corresponds to that input, either State A or State B, can be used
immediately to represent the current game world state without the additional latency from client
to server. The unused state is discarded.

Lee et al. [83] provide the only example of speculative executing found in the literature. Their
Outatime system predicts future states based on a model of past user input and computes paral-
lel states for input that is hard to predict. For cases of mis-prediction, Outatime uses corrective
rendering to visually repair the mis-predictions and time warp with state check-pointing to limit
error propagation.

Although not from a peer-reviewed forum (therefore, not part of our survey), Kopietz [77], from
id Software (Doom and other titles), patented a speculative execution technique—rather than send-
ing game states based on every possible combination of inputs, each input gets associated with a
motion vector describing how the rendered game frame would change in response to that input.
For some games, when there are multiple inputs, this may allow adding up vectors and applying
the sum to a rendered image, short-circuiting latency to the server.

Efficacy. The evaluation of speculative execution finds that with the technique, players only see
minor visual impairments for up to 128 ms of network latency and experience about a 1.5-point
QoE improvement (on a 5-point scale) at 384 ms of network latency. Player performance with and
without speculative execution is similar for 0 to 128 ms of latency, but dramatically better for 256
and 384 ms of latency.

4.3 Time Manipulation

Time manipulation alters the virtual time (i.e., the time in the game world) for computing the game
state and/or resolving player actions.
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Fig. 11. An example of time warp. Fig. 12. An example of “shot around the
corner.”

4.3.1 Time Warp. Time warp rolls back the game state to when the player action occurred on
the client, applies the action, then rolls the game state forward to the current time.

Figure 11 depicts an example of time warp. The figure shows the game world for a shooter
game on a client and the server, with time advancing from top to bottom. The player on the client
is shooting at a green avatar that is moving right to left, with the “plus” sign in the middle rep-
resenting a weapon reticle. At time t0 at the client, the green avatar is to the right of the reticle,
moving into the reticle at time t1 where the player pulls the trigger, and that action is sent to the
server arriving just after time t2. Meanwhile, on the server, the green avatar moves past the reticle
at time t1 and has continued right at time t2. When the action arrives at the server, the server
“warps” time back to when the action occurred at the client at time t1, applying the action to the
world representation at that time.

However, resolving an event in the past and rolling it forward may cause already rendered
client game states to be inconsistent with the new game state. This is a well-known artifact of
some shooting games and can result in “shot around the corner” as it is known by players, shown
in Figure 12. At time t1, at the blue avatar’s client, the green avatar is in sight and the blue player
fires. However, by time t2 when the server receives the update, the green avatar has reached a
safe position around the corner from the blue player and cannot be targeted. However, with time
warp, the server, upon receiving the blue player’s action at time t2, rolls back time to the green
avatar’s position at time t1 and applies the action. This hits the green avatar. Rolling the game
world forward to the present time, with the green avatar hurt or killed, may feel like being “shot
around the corner” for the green player.

Time warp is often called, somewhat confusingly, latency compensation or lag compensation in
some papers and, more often, in online blogs and player posts. It is also sometimes simply called
rollback. Also somewhat confusing, some image warping techniques (e.g., [43]) are called time

warp, whereas we classify them as latency concealment (see Section 4.1.1).
Jefferson [70] first proposed virtual time as a paradigm for distributed computation, with time

warp as an implementation. Although multiplayer games were not identified as a use at that time,
distributed discrete event simulations were.

Mauve [99] describes how timestamps and time warp can be used to overcome mistakes made
using extrapolation. In particular, an extrapolated state update may miss a key event, such as a
player being killed that time warp can roll back to correct. Mauve [98] and Mauve et al. [100]
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Fig. 13. An example of incoming delay.

provide a formalization of time warp in the context of continuous, interactive media, such as com-
puter games. Jiang et al. [71] mention time warp in their survey as a means to overcome incon-
sistencies caused by prediction. Liang and Boustead [91] assess time warp both with and without
incoming delay (see Section 4.3.2.1).

Lee and Chang [84, 86] describe and evaluate the “shot around the corner” problem in com-
mercial FPS games, illustrated in Figure 12, whereby time warp can undo a player’s move to a
safe location to being damaged. Subsequently, Lee and Chang [85] describe how commercial FPS
games provide a limit on how far back a server rolls back time and propose an advanced time
warp technique to prevent “shot around the corner” whereby a client can identify that the player
is currently safe (using their local time) and prevent rollback.

Sun and Claypool [137] implement and evaluate time warp for a cloud-based game streaming
system.

Efficacy. Evaluation of time warp is fairly limited. Time warp may improve player aiming ac-
curacy in an FPS game by 5% for 150 ms of latency [86] and overcome up to 100 ms of network
latency [91], and improve the score in an arcade-style game by 50% for 400 ms of latency [137].
Time warp’s “cost” to players is a reduced game state consistency with 8% of all hits in an FPS being
“shot around the corner” for 250 ms of latency and a decrease in player perception of consistency
by about a half-point on a 5-point scale for 100 to 800 ms of latency [137].

4.3.2 Time Delay. Time delay buffers game state updates to provide for more uniform latency
across clients. For example, delaying updates by D − li , where li is the latency for each client and
D is themax (li ), provides an equal latency for all players. Equal latencies across players can make
the game more fair and game states more consistent.

4.3.2.1 Incoming. Delay buffers player actions before applying them so that actions arrive (and
are applied) at all clients simultaneously.

Figure 13 depicts an example of incoming delay. The figure depicts downward timelines on a
server and two clients, Client A and Client B. At time 0, player A responds to the game with an
action. Client A immediately sends that action to the server and then to Client B. Because of the
latency for Client A to the server and the server to Client B, that action does not arrive at Client B
until time t1. To have the action executed simultaneously on both clients, Client A adds a incoming
delay equal to the latency from Client A to the server plus the latency from the server to Client B
before applying the action so that Client A also applies the action at time t1. Note that although
the extra delay is shown at the client in this example, it can also be used at the server. Incoming
delay is called local lag by some researchers.
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Mauve et al. [98, 100] apply and formalize incoming delay as depicted in Figure 13. Savery and
Graham [121] provide a toolkit for implementing incoming delay.

Diot and Gautier [38] describe a bucket synchronization incoming delay whereby all game state
updates received by a client are stored (delayed) until their corresponding time interval.

Lin et al. [92] use incoming delay on both clients and server to synchronize game states tempo-
rally, calling their technique sync-in and sync-out.

Paik et al. [105] apply incoming delay at the server to account for different client latencies, with
the delay time adjusted based on the number of clients within virtual proximity to each other.

Savery et al. [120] use incoming delay to improve consistency. Liang and Boustead [91] combine
incoming delay with time warp (see Section 4.3.1) and assess the impact on player performance.
Chen et al. [23] combine self-prediction (see Section 4.2.1) with incoming delay: the incoming delay
reduces state inconsistency across players, and the self-prediction alleviates some of the reduced
responsiveness caused by the extra delay. Zhang et al. [151] combine incoming delay with extrapo-
lation (see Section 4.2.2.2): incoming delay to reduce inconsistency before updates are received and
extrapolation to reduce inconsistency after updates are sent. Stuckel and Gutwin [136] evaluate
incoming delay as well as incoming delay plus the self-prediction “echo” by Chen et al. [23]. Hara
et al. [62], Ishii et al. [65], and Kusunose et al. [78] use a standard incoming delay technique that
buffers incoming game state updates up to the buffer period, then predicts (extrapolates) object
positions that do not have an update.

Brun et al. [14] mention using incoming delay as a way to adjust fairness among all players (i.e.,
players closer to the server are delayed to the same latency as players farther away), which has
a tradeoff of decreasing responsiveness for some players. Similarly, Le and Liu [79] use incoming
delay on the server by holding those packets from clients with lower than average delay so as to
equalize latency across all clients.

Savery et al. [122] propose incoming delay in two forms: (1) immediately send out a player’s
input but delay applying it to reduce inconsistency across players, and (2) an analogy to streaming
media applications whereby a state arriving from a game server is not immediately applied but
rather buffered to smooth out playback (they call this remote lag). Xu and Wah [146] describe an
incoming delay approach as well as a hybrid scheme combining incoming delay and prediction
(see Section 4.2)—in this case interpolation to smooth out updates. Zhao et al. [152] use incoming
delay to smooth input in a system supporting legacy games.

Efficacy. Evaluation of incoming delay using simulation shows that it can eliminate state incon-
sistency for games with up to 500 ms of network latency [38, 65, 92, 105, 122, 146, 151]. The “cost”
for more consistency is a reduction in the responsiveness for some players, reducing performance
in FPS games by 50% for 200 ms of delay [91]. Although there are general tradeoffs in the reduced
responsiveness for the added delay and the improved consistency [120], for 250 ms of network
latency, player performance may increase 30% but with little impact on QoE [136].

4.3.2.2 Outgoing. Delay buffers remote game state updates before sending to provide equal la-
tencies across clients. Outgoing delay is similar to incoming delay, but whereas incoming delay
adds the delay after receiving a message (e.g., a game action), outgoing delay adds the delay before

sending a message.
Figure 14 depicts an example of outgoing delay. The figure depicts timelines advancing top to

bottom on a server and two clients, with Client A having a lower latency to the server than Client
B. At time t0, the server has a game world update message to send to both Client A and Client B
and sends the message to Client B. However, since Client A has a lower latency than Client B,
the server delays sending the message until time t1. Setting the outgoing delay (t1 − t0) to the
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Fig. 14. An example of outgoing delay.

difference in latency for Client B and Client A means that the message arrives at Client A and
Client B simultaneously, at time t2.

Zander et al. [149] implement outgoing delay on a game server to add delay to outgoing mes-
sages to each player so as to equalize their latencies. The maximum total target delay threshold is
adjusted depending upon game type.

Brun et al. [14] propose using outgoing delay in servers so as to manage fairness across clients
with different latencies.

Wikstrand et al. [144] describe an “input buffering” scheme that uses outgoing delay to add
latency to outgoing messages to other players so as to equalize their arrival times (they consider
a peer-to-peer architecture).

Kaiser et al. [73] implement outgoing delay by concatenating game update messages at the client
into one larger packet for an intended delay period before sending to the server. The server does
something similar for updates to the clients.

Li et al. [90] implement outgoing delay for a cloud-based game platform where the amount
delayed is inversely proportional to the latency for each client. They propose a maximum threshold
to avoid extremely high latencies that might be required to accommodate some clients.

Efficacy. Outgoing delay has not been evaluated as extensively as incoming delay. For perfor-
mance, outgoing delay can improve fairness for FPS players for up to 400 ms of latency, evening
out a difference of about 30% in performance between two players [149]. For player QoE, outgoing
delay can improve perceived fairness by 2 points on a 5-point scale for 80 ms of latency [90].

4.4 World Adjustment

World adjustment modifies game states to decrease difficulty akin to configurations with lower
latency.

4.4.1 Control Assistance. Control assistance adjusts the outcome of player inputs to accommo-
date for inaccuracies due to latency.

Figure 15 depicts an example of one type of control assistance: “target magnetism.” The blue
avatar aims and shoots at the green avatar. Without assistance, the shot would miss, as indicated
by the solid red line. However, with the target magnetism control assistance technique, the bullet
trajectory is altered to bend toward the green avatar, making it easier for the blue player to hit
the target. Other control assistance technique examples include “sticky targets” that reduce the
cursor gain while near a target and “aim dragging” that cause the cursor to follow the direction of
an intended target. The amount of assistance provided can be set proportional to the latency.
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Fig. 15. An example of control assistance.

Mandryk and Gutwin [97] test the utility and perceptibly of the sticky targets control assistance
technique applied to a computer mouse, albeit without additional latency.

Bateman et al. [8] compare three control assistance techniques for mouse pointing: cursors that
cover an area, “gravity” toward a target, and the aforementioned sticky targets.

Vicencio-Moriera et al. [142] examine control assistance for aiming with a mouse in an FPS game
considering five techniques: automatically locking on a target; bullet magnetism as in Figure 15;
and the aforementioned area cursor, sticky targets, and target gravity. Again, their focus is on
ability to help the player, not necessarily to overcome latency.

Ivkovic et al. [66] study the ability of control assistance for aiming a computer mouse in an FPS
game and tracking a target. Their test conditions are for local system latency, not network latency,
but pertain to cloud-based game streaming with network latency. Sabet et al. [117] also examine
control assistance for cloud-based game streaming—in their case, for area cursors in 2D games
with mouse-based aiming.

Efficacy. Most of the referenced studies evaluate local latency only, not network latency. In gen-
eral, they show that control assistance can improve player performance in 2D and 3D aiming
games in the presence of latency, improving player performance by up to 40% [66, 97, 142]. For
multiplayer games, control assistance can reduce score differential in shooting gallery games and
make the game more fun when players have disparate skills [8]. For low levels of correction, con-
trol assistance is not readily noticeable by players [97] and can improve input quality by about a
half-point on a 5-point scale with about 200 ms of latency.

4.4.2 Attribute Scaling. Attribute scaling increases or decreases numeric attributes of objects
and game world parameters to adjust game difficulty so as to make player actions easier to com-
plete with higher latency. For example, decreasing the size of obstacles can make them easier to
avoid during navigation, or increasing the speed of the player’s avatar can make it more nimble.
The intent can also be to make the action more resilient to mistakes. For example, avatar durability
can be increased by adding extra lives or increasing the health or armor attributes.

Figure 16 depicts an example of attribute scaling for a game in which a player tries to navigate
the green avatar from left to right through narrow gaps between obstacles. There are two differ-
ent network latency scenarios depicted for the same game condition. On the left is a low-latency
scenario that has relatively narrow gaps between the obstacles since the player’s control is not sig-
nificantly impacted by the latency. In contrast, on the right is a high-latency scenario in which the
game attributes have been scaled to make the gaps between the obstacles larger since the player’s
control is more sluggish with the higher latency.

Vaghi et al. [141] mention adapting the pace of interaction required by a game with latency (i.e.,
the user interaction rate would slow down with higher latency).

Xu and Wah [146] extend the hitting time in a fighting game based on latency, where higher-
latency players have a longer time period to execute a strike.
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Fig. 16. An example of attribute scaling.

Shen and Zhou [127] change the speed of the ball in a pong game in relation to latency and the
object’s proximity to a player-controlled avatar that may interact with it (i.e., the ball slows down
when nearing a player controlled object when there is high latency).

Sabet et al. [116] evaluate adjusting game attributes in response to higher latency by (1) increas-
ing the deadline for a game action (i.e., giving the player more time to execute an action) and
(2) decreasing the precision required for a game actions. Sabet et al. [117] extend this work with
additional attribute scaling for (3) predictability, where randomness is decreased with latency;
(4) the number of required actions per minute, where the number of required actions decreases
with latency; and (5) a consequence where the impact of a detrimental action (e.g., a collision) is
decreased with higher latency.

Lee et al. [82] propose adjusting the geometry of a game world based on latency. Specifically,
they adjust the gap distance between pipes based on latency for the game Flappy Bird. Salay and
Claypool [118] evaluate the same—pipe gap distance based on latency for Flappy Bird—in addition
to allowing the player to manually adjust game attributes in response to latency.

Carlson et al. [18] study how adjustments to attributes for two custom gamesan FPS game and a
rhythm game—affect players’ scores with and without network latency. They then derive models
they propose to be used to scale the games at runtime based on the players’ experienced network
latencies.

Efficacy. In general, attribute scaling has been shown to benefit player performance and QoE in
the presence of network latency [18]. Attribute scaling can be effective for helping players perform
50% better with network latency for an arcade-style game with 400 ms of latency [118] and perform
as well with network latency as without it for an arcade-style game with 80 ms [82] of network
latency. Attribute scaling has been found to benefit player QoE by up to 1 point on a 5-point scale
for up to 400 ms of latency [117] and reduce players’ perception of delay from 85% down to 65%
for 40 ms of latency in a fighting game [146].

4.5 Summary

Table 2 provides a summary table of the taxonomy in Figure 3 with the techniques rotated and
presented top to bottom. For each technique, the corresponding publications are shown on the
right.

From the table, extrapolation is the most published latency compensation technique, with 41
papers (about half) in this area, more than twice that of the next closest—incoming time delay with
19. Correspondingly, other-prediction and time delay are the most published techniques, belonging
to the general group of prediction and time manipulation, respectively.
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Table 2. Publications for Each Latency Compensation Technique

Technique Publication

Concealment [12, 15, 43, 74, 74, 76, 126, 131]
Feedback

Exposure [51, 58, 141, 144]

Self-Prediction [6, 14, 15, 23, 74, 80, 126, 139, 145]

Interpolation [86, 119, 121, 124, 130]

[1, 2, 14, 16, 24, 30, 32, 37, 38, 40, 41, 61]

[54, 62, 65, 69, 71, 75, 78, 87–89, 98]

Latency [99, 101, 102, 106, 108, 115, 120–123, 126]

Other-Prediction
Extrapolation

[129, 141, 144, 147, 148, 150, 151]

Compensation

Prediction

Speculative Execution [83]

[14, 23, 38, 62, 65, 78, 79, 91, 92, 98]
Incoming

[100, 105, 120–122, 136, 146, 151, 152]Time Delay

Outgoing [14, 73, 90, 144, 149]
Time Manipulation

Time Warp [70, 71, 84–86, 91, 98–100, 137]

Control Assistance [8, 66, 97, 117, 142]
World Adjustment

Attribute Scaling [18, 82, 116–118, 127, 141, 146]

Note: Color intensity is proportional to the number of publications.

5 LATENCY COMPENSATION IN COMMERCIAL NETWORK COMPUTER GAMES

The objective of this section is to provide evidence of commercial network games using la-
tency compensation techniques. Although there are invariably some non-commercial, open source
games that have also used latency compensation, ascertaining this from the many games that are
open source is beyond the scope of this survey. Moreover, the most popular games in the world
are not open source but are instead commercial games, hence our focus here.

Unfortunately, most commercial games are “black boxes,” wherein it is difficult to ascertain what,
if any, latency compensation techniques are being deployed. However, the developers for some
games have provided specific mention and even details about latency compensation techniques
used in their software. This section provides an overview of the techniques and the games found
in these developer presentations and blogs.

The games listed are not meant to indicate that these are the only games that use latency com-
pensation techniques; far from it—it is our expectation and experience that most if not all AAA
multiplayer network games use some form of latency compensation. Instead, this section includes
known games where the game developers themselves describe, through either Web documents or
online presentations, the latency compensation techniques implemented in their games.

In locating these presentations and blogs, we started with a list of four blogs we knew about
previously.

We then searched two specific online forums that are known for having technical content posted
by game developers: the Game Developer’s Conference1 and Gamasutra.2

Next, we visited forums that are maintained by the publishers for the top-10 eSports games [113]
(the list is based on viewership and prize pools) and searched for latency compensation posts made
by game developers. The list of games with forum citations are shown in Table 3, given in list order.

Last, we did general Internet searches for latency compensation presentations and blogs includ-
ing only those made by game developers about their own commercial games.

1https://gdconf.com/.
2https://www.gamasutra.com/.
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Table 3. Top 10 eSports Games Searched for Latency Compensation
Posts

Game Publisher Year Forum

League of Legends Riot Games 2009 [81]

CS:GO Valve Corporation 2012 [31]

Fortnite Epic Games 2017 [42]

DOTA2 Valve Corporation 2013 [39]

Hearthstone Blizzard Entertainment 2014 [48]

Call of Duty Activision 2003 [27]

Overwatch Blizzard Entertainment 2016 [49]

Rainbow 6 Siege Ubisoft 2015 [50]

Rocket League Psyonix 2015 [134]

NBA 2K Sega Sports 1999 [47]

Table 4. Developer Presentations and Blogs with Details on Latency Compensation
Implementations for Commercial Network Games

Year Link Compensation Technique Game Genre Range

1996 [19] Self-Prediction QuakeWorld FPS Up to 200 ms
2001 [11] Extrapolation Age of Empires RTS Unspecified
2001 [10] Extrapolation, Interpolation, Time Warp Half-life FPS Unspecified
2011 [3] Extrapolation, Incoming Delay, Halo FPS Up to 300 ms

Latency Exposure
2012 [17] Self-Prediction, Extrapolation, Time Warp GGPO (library) Fighting Unspecified
2016 [56] Interpolation, Self-Prediction Call of Duty: Black Ops III FPS Unspecified
2016 [46] Extrapolation, Incoming Delay, Interpolation, Overwatch FPS Unspecified

Self-Prediction, Time Warp
2016 [138] Extrapolation, Time Warp MechWarrior Online FPS Unspecified
2017 [34] Extrapolation, Interpolation Watch Dogs 2 RPG Unspecified
2017 [28] Self-Prediction, Time Warp Half-life FPS Up to 200 ms
2018 [33] Extrapolation Rocket League Sports Up to 600 ms
2018 [29] Extrapolation Rocket League Sports Unspecified
2018 [133] Incoming Delay, Time Warp Injustice 2, Mortal Kombat Fighting Up to 300 ms
2018 [5] Interpolation, Time Warp Unity’s FPS Sample Game FPS Up to 200 ms
2019 [60] Extrapolation, Incoming Delay COD: Modern Warfare FPS Unspecified
2019 [110] Incoming Delay, Time Warp Various Fighting games Fighting Up to 150 ms
2019 [45] Extrapolation, Incoming Delay Overwatch FPS Up to 1,000 ms
2020 [135] Time Warp Valorant FPS Unspecified
2020 [114] Time Warp Valorant FPS Unspecified
2020 [35] Incoming Delay, Latency Exposure, Valorant FPS 20–50 ms

Self-Prediction

Table 4 summarizes the results. Year is when the presentation/blog was published. Compensation

Technique maps the latency compensation technique(s) in the presentation/blog to our taxonomy—
note that many indicate that their games implement more than one technique. Game provides the
names of the game(s) described in the presentation/blog. Genre provides for the general category of
game to which the targeted games belong: “FPS” (first-person shooter), “RPG” (role playing game),
“Fighting,” and “Sports.” Range indicates the latency values mentioned in the presentation/blog, or
“unspecified” if none.
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From the table, extrapolation (11) is referenced the most, followed by time warp (19), incoming
delay (7), self-prediction (6), interpolation (5), and latency exposure (2). About two-thirds (14 of
20) of the references are to FPS games, probably owing to their sensitivity to network latency [26]
and heavy use in competitive gaming (e.g., eSports).

6 DISCUSSION OF TAXONOMY

Based on the sheer number of publications, there has been the most research done in latency
compensation via prediction, specifically extrapolation. However, although prediction is well re-
searched in general, the area of speculative execution is not. Improvements to speculative execu-
tion may rely upon emerging AI techniques to predict player input and hence game state before
it happens. Although predicting player actions in general may be difficult, doing so for the con-
strained conditions provided by many games seems possible.

Manipulating the virtual time in game worlds has been fruitful, most prominently by delaying
incoming actions to smooth input and provide fairness, and in “warping” time to resolve past
actions. Commercial games make heavy use of both of these techniques.

Conversely, there is substantially less research in feedback, despite feedback perhaps being the
most direct connection to the player via response to input. Latency exposure in the form of “ping”
values is common to many games, but research on how such exposures mitigate latency as well as
more advanced exposure approaches merit additional exploration.

There is considerable potential for research in world adjustments as well, with most control
assistance techniques not having been assessed for latency and approaches to attribute scaling as
broad and deep as games themselves.

In general, many latency compensation techniques could use additional evaluation to study a
broader range of latencies but also with a broader set of users. Ideally, a representative sample
from a user study would cover the broad demographic range of today’s gamers.

Although the blogs obtained from game developers provide evidence of latency compensation
in commercial games, the extent to which academic research has been incorporated into com-
mercial products is not well known. In fact, the relatively narrow range of techniques in Table 4
suggests that many techniques proposed by the scientific literature may not yet be incorporated
into commercial games.

Latency poses a particular challenge for a relatively recent game system type—that of cloud-
based game streaming,3 such as Microsoft’s Xcloud, Amazon’s Luna, NVidia’s GeForce Now,
Google’s Stadia, and Sony’s PlayStation Now. Unlike in traditional network games, with cloud-
based game streaming the client does not have the game state nor does it typically do any “heavy-
weight” processing such as 3D graphics rendering. Instead, the game frames are rendered at the
cloud-based server and streamed down to the client similar to video. The client captures player
input (e.g., mouse movements, button presses) and sends those back to the server for processing.
In this type of system, the “thin” client cannot do the processing required by some of the latency
compensation techniques. Specifically, the green shaded techniques in Figure 3 labeled “Client”
cannot be done in cloud-based game streaming. Cloud-based game streaming systems generally
can only apply the “Server” or “Either” techniques. This suggests the opportunity and challenge
to develop new techniques to compensate for latency in cloud-based game streaming.

To make it easier to find the resources referred to in this article, the list of peer-reviewed research
papers and developer presentations/blogs (with links) are available at the following URL:

https://web.cs.wpi.edu/~claypool/papers/lag-taxonomy/.

3https://en.wikipedia.org/wiki/Cloud_gaming.
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7 SUMMARY AND FUTURE WORK

Computer games continue to grow in popularity for entertainment and professionally through eS-
ports. Computer games are also often multiplayer, connecting computers over a network to enable
geographically separated players to interact with each other in the same virtual world. These mul-
tiplayer network games need to exchange player actions and game states across the network fast
and frequently to provide for a smooth, interactive player experience. Unfortunately, network la-
tency adds delay for game updates from the server and player actions from the client, degrading the
QoE by making the game less responsive and increasing inconsistency across client game states.

Latency compensation techniques use software at the client or server (or both) to mitigate the
negative effects of network latency. Although some latency compensation techniques were estab-
lished decades ago and are well used in the commercial game industry today, to the best of our
knowledge, the space of latency compensation techniques has not been surveyed, nor have tech-
niques been grouped based on their characteristics. Such a survey and organization can provide
guidance for game and game system developers for techniques to deploy and for researchers who
seek to invent new techniques.

We located and surveyed 85 peer-reviewed publications that dealt with latency compensation
techniques. Our records list the type of techniques used and summary of evaluation, including
game(s) studied, type of evaluation, and latency range. Our search also yielded evidence of la-
tency compensation for commercial games, with 20 developer blogs and presentations detailing
their latency compensation implementations. The latency compensation techniques are placed
into a novel taxonomy based on similarity, with four main groups—feedback, prediction, time
manipulation, and world adjustment—leading to 11 final technique types: concealment, exposure,
self-prediction, interpolation, extrapolation, speculative execution, incoming delay, outgoing de-
lay, time warp, control assistance, and attribute scaling. The most popular latency compensation
categories based on peer-reviewed literature are prediction in the form of extrapolation and time
manipulation in the form of incoming delay.

Our future work is to continue to develop and evaluate novel latency compensation techniques
for multiplayer network computer games. In particular, there is a need for latency compensation
techniques for cloud-based game streaming systems—since such systems cannot do heavyweight
computation on the client, viable techniques must be server-side only. Our future work is also to
assess latency compensation techniques on the increasingly broad range of gaming devices and
inputs, such as touch screens and virtual reality.
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