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Computer game development has been shown to be an effective hook for motivating students to learn both
introductory and advanced computer science topics. While games can be made from scratch, to simplify the
programming required game development often uses game engines that handle complicated or frequently used
components of the game. These game engines present the opportunity to strengthen programming skills and
expose students to a range of fundamental computer science topics. While educational efforts have been effective
in using game engines to improve computer science education, there have been no published papers describing
and evaluating students building a game engine from scratch as part of their course work. This paper presents
the Dragonfly-approach in which students build a fully functional game engine from scratch and make a game
using their engine as part of a junior-level course. Details on the programming projects are presented, as well
as an evaluation of the results from two offerings that used Dragonfly. Student performance on the projects as
well as student assessments demonstrate the efficacy of having students build a game engine from scratch in
strengthening their programming skills.
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1 Introduction

By the end of their second year, most computer science students have been exposed to a breadth
of foundational materials, such as introductory programming, basic data structures and algo-
rithms, and have begun to write programs of moderate size – hundreds of lines of code, perhaps
up to even a thousand lines of code. Such students are at the cusp of being able to come into
their own as computer programmers. What are often needed to facilitate the next phase in their
education are projects that draw upon their knowledge from their earlier courses (e.g. algorithms
and object oriented programming) to: 1) reinforce existing programming concepts by applica-
tion in a new domain, 2) provide an understanding of the inter-connectedness of what may have
been mostly disparate computer science topics, and 3) provide a pathway to new knowledge in
a domain that inspires and excites them.
Regarding this last point, the need for an inspiration to learn complex programming, computer

games provide an opportunity for inspiring projects since games are quite familiar to students
in form, if yet still unfamiliar in construction. Today’s youth have grown up playing games,
with over 90% of kids aged 12-17 playing computer games, most still playing games daily Irvine
(2008). Many students choose computer science, or a related educational discipline, because they
want to be a game developer as a career when they graduate, or at least would like to develop
games as a hobby. Educators can harness this passion, leveraging student interest to engage them
in computer programming topics in the context of computer games, thus providing relevance to
the materials being taught.
There have been numerous efforts that have sought to leverage students’ interest in games

in teaching computer science education. These have ranged from using games to teach specific
topics, such as recursion Chaffin et al. (2009) to broader topics such as design patterns Gestwicki
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& Sun (2008) and software architecture Wang (2011). However, while there have been many
approaches that have students build games to introduce or reinforce computer science techniques,
to the best of our knowledge there have not been systematic efforts for class projects where
students build a game engine to enhance programming skills.
A game engine is a software system designed to facilitate the development of computer games.

As such, a game engine provides services commonly needed by game programmers, including
graphics (2d or 3d), input devices (e.g., mouse, keyboard), and event processing (e.g., timers,
object collisions). More advanced game engines may include support for networking, physics and
artificial intelligence. Game engines are often designed to be reusable, allowing game program-
mers to make many different games relatively easily. Such generality is sometimes supported by
allowing game programmers to modify the base game content, such as by providing new models
and textures in addition to levels and gameplay rules, giving rise to “mods”. Games created with
a specific engine are often similar since the game engine is designed with a specific game genre
in mind (e.g., a first person shooter game). Game engines are also designed to be efficient, tuned
to optimize the performance of the most common game operations quickly (e.g., rendering a
textured, 3d model on the screen), as well as provide general-purpose functions commonly used
(e.g., moving game objects and generating collisions for other objects they hit). Game engines
are increasingly useful for applications outside of games, such as scientific research and movie
special effects.
Building a game engine provides exposure to and even mastery of many fundamental computer

science and software engineering topics: algorithms, software design patterns, and object-orient
programming, testing and debugging. In addition, building a game engine affords the opportu-
nity for: 1) programming a sizable software engineering project, a valuable skill students must
acquire as the move beyond the “toy” projects that often are done in more introductory courses;
2) in-depth understanding of the workings of a game engine, often leading to more efficient game
programmer code that can translate to other, even commercial, game engines; 3) portfolio ma-
terial demonstrating programming prowess that can be shown to prospective employers during
a job search, helping motivate students that may have entered computer science with the intent
on being a game developer for a career.
While there are numerous books that provide insights into the components and functionality

of a game engine, such as Gregory (2009); Thorn (2010), there are far fewer that examine
significant portions of the code of a game engine. The few books that lead a student through
actually programming a game engine, such as Yuzwa (2006), tend to provide pages of code that
are unexplained and incomplete, or may simply dump the code listing on a CD-ROM, leaving it
for the student to decipher. Moreover, learning from a book alone is often unrealistic for everyone
but the most talented and disciplined students.
Broadly, education efforts that have developed games Gestwicki & Sun (2008); Wang (2011)

have generally not exposed students to game engines, while those that have exposed students to
game engines El-Nasr & Smith (2006); Ganovelli & Corsini (2009) have not provided an in-depth
understanding of the programming required to do so. The few published education efforts that
provide in-depth engine exposure Parberry et al. (2007); Vanhatupa (2011) have not provided
the level of understanding nor extensive programming experience that could be provided, in
addition to lacking in substantive evaluation of the merits.
Our approach is to construct a series of programming projects that lead students through

building a game engine (named Dragonfly) from scratch, culminating in their creation of a game
using their own engine. In the first project, students complete a tutorial that provides important
insights into how to use the Dragonfly game engine from the game programmer’s perspective.
In the tutorial, students complete a “stock” game, then extend the game to show some mastery
in using the engine. In the second project, done in phases, students develop their own version of
Dragonfly, first by creating the foundational components of the engine, then building a working,
fully functional game engine and, lastly, as time and ability allow, enhancing the engine to be a
full-featured game engine.
As detailed in this paper, Dragonfly has been used in two separate course offerings of about 40
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total students, providing a basis for evaluation. Objective results indicate students are able to
build a fully functional game engine from scratch if used as a major class project assignment, even
when the development effort is solo. Subjective results indicate students learn a lot about game
engine internals from the course, as well as become significantly stronger C++ programmers.
Current efforts are underway to publish a book that details the design of the Dragonfly engine
and provides the source code as reference for computer science instructors that wish to use it in
their courses.1

The rest of this paper is organized as follows: Section 2 lists work related to the efforts presented
in this paper; Section 3 presents the Dragonfly approach to teaching students to program a game
engine from scratch; Section 4 describes student projects that build the Dragonfly engine and
make games with it; Section 5 details our course that uses the Dragonfly approach; Section 6
analyzes results from two offerings of our course; Section 7 discusses some issues related to
building a game engine; and Section 8 summarizes our conclusions and presents possible future
work.

2 Related Work

Broadly, related work publications fall into three areas – somewhat distantly related efforts that
use games in computer science eduction (Section 2.1), more closely related efforts that use game
engines in computer science eduction (Section 2.2), and the most closely related efforts that
build game engines, or parts of games engines, in computer science education (Section 2.3).

2.1 Using Games

There are many related papers that have used games as motivation for teaching computer science.
Chaffin et al. (2009) used a game simulation environment that helped students learn about

recursion. Students wrote code that the game environment animated in searching depth-first
through a tree. A study using their game with computer science students echoed the enthusiasm
students have for games that has been perceived in other work, as well as provided insights into
how such games should be constructed.
Volk (2008) presented an effort to teach software engineering in the context of developing a

large, commercial-sized computer game. Rather than just extend software engineering into a
game, the focus was on a realistic game development setting, including cost and risk assessment.
Volk found the gaming-passion of students fueled the project efforts well, with only some supple-
mentary introductory game design material being needed. A sound base in programming skills
was required for the class to be a success.
Gestwicki & Sun (2008) used computer game development as a catalyst for teaching object-

orientation programming and design pattern integration. Games provided the motivation for
students as well as the context for a pattern-rich application. Their paper described six main
design patterns taught in the context of an arcade-style, Java-based game. They also presented
their teaching methodology, assessment techniques, and results, albeit without quantifiable out-
comes.
Wang (2011) described a software architecture course whereby students constructed a game

using XNA and C#. Extensive evaluation was made comparing the outcome with an alternative
choice students had for the projects – to build a robot-simulation in Java. Evaluation studied the
choice of domain compared to the project popularity, complexity of the software architectures
produced, student effort and grades earned. Wang found the game development projects could
successfully be used to teach software architecture, and that the games projects provided more
motivation for the students than the robot simulations.

1See http://dragonfly.wpi.edu/book/
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Kurkovsky (2009) explored whether or not mobile game development provided motivation for
learning computer science. Rather than applying the concept in practice, Kurkovsky employed
a large student survey to ascertain interest. His work also included a case study showing how
mobile game development can be used as a broad introduction to topics in introductory computer
science.
The above approaches all have students working with games at the game programmer level,

not delving into the functionality of a game engine at all. In contrast, our approach uses the
same motivation (i.e., computer games), but provides a much deeper understanding of game
functionality through having students develop a general-purpose game engine, and then develop
an original game using that engine.

2.2 Using Game Engines

There are other papers that use game engines to facilitate computer science education.
El-Nasr & Smith (2006) described how modifying (often called modding) existing games using

their engines can be used to teach computer science (and other disciplines). They presented two
case studies of game-modding in courses that illustrated skills learned by students, as well as
increased student motivation. They also described how modding different engines can be used
to emphasize different skills.
Claypool & Claypool (2005) described a set of project-based modules to help teach software

engineering through designing and creating games. Their approach showed improved class partic-
ipation and performance and exposed students to different aspects of computer games. Students
had choices of game engines to use, such as GameMaker1 or the Golden T.2 Subjective assessment
from students suggested increased motivation from using the modules.
Ganovelli & Corsini (2009) presented a game engine that allowed students to develop a mul-

tiplayer car racing game to stimulate interest and learning in introductory computer science
topics. Students implemented the rendering of the scene, while the game engine handled the
communication, synchronization and all other aspects of the game. The innovative aspect of
their approach was to allow all on-line users to see each other’s work, letting students learn from
others and motivating them to improve their own.
Muratet et al. (2009) presented a study whereby students developed a serious game as motiva-

tion for a class that enhanced programming skills. The game students developed was a real-time
strategy (RTS) game built with the Spring RTS engine.3 As future work, the paper described
a teaching experiment that could be used to ascertain if development of a serious game can be
adapted to learn programming. Unfortunately, the results of the experiment were not yet known.

2.3 Building Game Engines

There are even fewer published papers that describe building game engines as part of a computer
science education.
Coleman et al. (2005) presented Gedi, an open source game engine for teaching computer

game design and programming in C++. The game engine was used as part of an undergraduate
computer science concentration in game development. The authors described the engine in detail,
with links to the source code online since the intent is for the engine to be extensible/modifiable
by the students. However, there was no evaluation of how using Gedi in courses was, or was not,
effective. The engine itself was based on an earlier, out of date effort called Mirus de Sousa (2002).
Unfortunately, neither Mirus nor Gedi is currently maintained, and Gedi is several generations
old in terms of operating system and software compatibility.

1http://www.yoyogames.com/gamemaker/studio/
2http://www.goldenstudios.or.id/products/GTGE/
3http://spring.clan-sy.com/
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Parberry et al. (2007) presented SAGE, a game engine designed to be used in computer science
undergraduate courses. Specifically, SAGE was designed to let students add their own features
to the game engine source code. Some details of SAGE use in the classroom was provided, but
evaluation was only analyzed through subjective highlights of the games students produced using
SAGE.
Vanhatupa (2011) described efforts and experiences using CAGE, an open source game engine

built in C++ and Lua scripts. The graphics for CAGE used Crystal Space1, a cross-platform
development kit for real-time, 3d graphics. Students could modify the C++ code or extend the
engine via Lua scripts. CAGE had been used in game programming courses, and the authors
highlighted some subjective feedback from students in those courses.
The above papers highlight work that exposes students to the internals of academic, but

functional, game engines, allowing students to study and even extend a working engine. However,
unlike in our approach, there is no systematic effort to have students build the engines from
scratch. Our work has students program a fully functional game engine from scratch, and also
unlike earlier work, the paper at hand provides some evaluation of the merits of the approach.

3 Dragonfly

This section first provides the requirements for an approach which has students build a complete
game engine as part of a computer science course (Section 3.1), then highlights the areas of
programming focus that such an approach provides (Section 3.2).

3.1 Requirements

As stated in Section 1, the goal is for students to build a fully functional game engine from
scratch. While there may still be value in students getting part-way done with an engine, a
partial effort leaves students feeling dissatisfied and, more importantly, unable to use their engine
to make games. Also, it must be kept in mind that a game engine, even a small one, is a large
programming effort, typically thousands of lines of code. Most computer science students at the
start of their junior year have not done class projects of such magnitude, typically only writing
“toy” programs of hundreds of lines of code at the most.
Solution: Break the development of the game engine up into three manageable sized phases,

where completing all phases results in a fully functional, full-featured game engine. Course
lectures provide the design and design rationale for Dragonfly, while the bulk of the students’
work outside of lecture time is implementing the design.
An object-oriented language is needed for development, both because of its importance for

many other computer science courses, but also because most commercial game development is
done in an object-oriented language. Students must have some proficiency with the implemen-
tation language chosen as learning a new language at the same time as learning to build a game
engine is likely an insurmountable challenge.
Solution: Use C++ for both game development and game engine development. In our cur-

riculum, as in many computer science curricula, the options for an object-oriented language
students have exposure to from introductory courses means either C++ or Java. Students had
done considerable programming with both languages, generally professing equal comfort with
each. However, most game programming and definitely nearly all game engines and engine-type
development (e.g., database management systems and operating systems) is done in C/C++.
Visual output is critical for most games, yet a real-time graphics engine is a significant de-

velopment effort. Even some of the most advanced computer science students are not able to
build real-time graphics engines as part of their undergraduate education. The amount of code

1http://www.crystalspace3d.org/
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required for graphics support is typically thousands of lines by itself and could easily dwarf the
rest of the engine. In addition, animations and collisions regarding objects should be easy to
understand to keep the code manageable. Lastly, our previous experience with programming
courses and games found students spending too much time making digital art (so that their
games looked good) rather than concentrating on the programming, the focus of the course.
Solution: Use 2d, text-based graphics, specifically curses.1 Curses allows programmers to write

text-based applications in a terminal-independent manner. Text graphics (using curses), only
requires about 350 lines of engine code. In addition, since only text-based graphics are allowed,
students are far less inclined to spend time on art when making a game. Games all end up with
a rather “retro” look and feel, which suits many hacker-types quite well. The minimalist art
support is actually useful for game design,2 allowing students to concentrate on the game itself
and not how it looks. Having the engine only support 2d graphics greatly simplifies animations
and collision detection, too, as object surfaces abstract fairly easily for developing and testing.
As a side-benefit, curses also provides for non-blocking input from the mouse and keyboard.
Beyond developing the engine, the goal is for students to build games using the engine. While

the engine itself is related to the game, the “fun factor” motivating students stems from game
development. Moreover, developing games from the game programmer perspective solidifies the
programming knowledge and skills gained from building the engine.
Solution: Have two projects from the game programmer perspective. The first exposes students

to the Dragonfly engine, and the second allows students to make a game of their own creation
using their engine.

3.2 Focus Areas

In building Dragonfly, students focus on the core aspects of a game engine:

• The Game loop: real-time control of game actions

• Input: non-blocking keyboard and mouse

• Objects: Game objects in the world and display objects to the player

• Events: In-game as well as user-defined events

• Physics: Object collisions and velocity for movement

• Display: Drawing and animating sprites

Programming skills are strengthened in the following areas:

• Software patterns: the command pattern (encapsulating events), the iterator pattern (travers-
ing containers), the observer pattern (objects indicating interest in events), and the singleton
pattern (for game engine managers).

• Inheritance: base objects to derived game objects and display objects to derived game code
objects (e.g., Hero). Includes run-time polymorphism, and dynamic and static type casting.

• Real-time: game loop programming and events dependent upon precise timing (milliseconds
of granularity).

• Data structures: containers for lists of objects along with iterators, and scene graph imple-
mentations, with quad trees an option.

• Input/Output: reading sprite resources from a file, output log messages to a file, and non-
blocking keyboard and mouse input.

• Debugging: debugging from game code through libraries (the engine), debugging pointers and
memory allocation, and exposure and refinement to using a debugger (gdb and ddd in our
case).

• Testing: unit testing and functional testing.

1Actually, ncurses, the most widely known, open source implementation of curses.
2http://www.perlenspiel.org/
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• : Performance: tuning objects and collision representation via a scene graph and measuring
performance with benchmarks and profiling.

In all, a typical student implementation of the Dragonfly engine is about 5500 lines of code,
spread over 30 classes. For reference, the Dragonfly class documentation1 can be found online
at http://www.cs.wpi.edu/~claypool/papers/dragonfly-projects/include/.

4 Projects

This section describes the projects students work through in the Dragonfly approach. The
individual projects can be found online at http://www.cs.wpi.edu/~claypool/papers/

dragonfly-projects/. Point breakdowns and grading rubrics are also provided for each project.

4.1 Project 1 – Catch a Dragonfly

The first project is for students to get used to Dragonfly, typically their first exposure to a text-
based, 2d game engine. Students work through a tutorial that has them make a simple, “stock”
game using Dragonfly. This helps students better understand a game engine by developing a
game from a game programmer’s perspective, providing the foundational knowledge needed for
building their own Dragonfly game engine in project 2 (Section 4.2, and designing and developing
their own game from scratch with it in project 3 (Section 4.3).
In project 1, students:

(1) Visit the Dragonfly Web page and briefly familiarize themselves with the contents. The
Web page includes a download of the Dragonfly game engine (compiled – no source code),
documentation with details on the classes and methods for the game programmer, and
links to games and utilities that may be helpful for subsequent projects.

(2) Download the Dragonfly game engine for the environment of choice (both Linux and
Cygwin2 on Windows are supported) and setup their development environment. This
means ensuring all the needed external libraries are in place (e.g., curses), installing
the Dragonfly libraries and header files in an appropriate place3, and creating a basic
Makefile and simple test program to be sure development can proceed. The same basic
setup is used for the students’ own game engine development in project 2.

(3) Complete the tutorial, available from the Dragonfly Web page.4 The tutorial has students
build an arcade-style shooting game, called Saucer Shoot, where the player flies a space
ship into combat against an ever-increasing number of enemy saucers. The tutorial has all
sprites needed for development as well as working sample code for students to reference.
Figure 1 shows screen shots from the Saucer Shoot game students build. The splash
screen is shown when the game starts, followed by the opening where players can select
‘p’ to play. Once playing, the player controls the spaceship on the left of the screen until
hit by a saucer, resulting in the game over screen.

(4) Extend the Saucer Shoot game in a meaningful way by adding 10% or more functionality.
For example, student’s may add additional weapon types or enemies, health and/or
multiple lives, a high score table, or something entirely of their own creation. The actual
10% extension done is up to each student, but s/he indicates what is done with brief
documentation when submitting the assignment.

Students work alone for project 1. When done, students turn in a source code package with all

1Generated by Doyxgen
2Cygwin provides a Unix-like environment for Windows. Cygwin is free under the GNU GPL. See: http://www.cygwin.com/
3Dragonfly can be installed in user space – root/administrator permissions are not needed.
4http://dragonfly.wpi.edu/tutorial/
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Figure 1. Screenshots from the Dragonfly tutorial game, Saucer Shoot. Top left: splash screen, top right: opening, bottom
left: game play, bottom right: game over.

code necessary to build their games, including header files and any needed additional sprites (de-
pending upon their extension). In addition, each student includes a Makefile for compiling their
game, a README file explaining the platform, files, code structure, and anything else needed
to understand (and grade) their game, and a GAME file providing a short description of the
additional 10% functionality extension to the Saucer Shoot tutorial game, including indicating
the code written.

4.2 Project 2 – Dragonfly

In the second project, students build their own version of Dragonfly. Project 2 is broken into
three parts: A) Dragonfly Egg (Section 4.2.1), B) Dragonfly Naiad1 (Section 4.2.2) and C) Drag-
onfly (Section 4.2.3), that build upon each other to end with a fully functional, full-featured
game engine. Since it is critical that game engine code be easily understood (from the game
programmer’s perspective) and, equally importantly, robust, the three projects are structured
such that completing parts A and B provides for a fully functional, if somewhat limited, game
engine. This level of proficiency enables students to proceed to project 3, where they make a
game using their engine. Completing part 2C provides for a full featured game engine, with
functionality that makes it easier to create a broader range of games.
For timing and grading, the due dates are staggered so that most of the time is allocated for

part A and part B, but there is still time for completing part C for the top students in the class.
In addition, points are allocated such that completing part B is sufficient for earning a “B” grade
for project 2, while fully completing part C provides an opportunity for earning an “A” grade
for project 2.
Students are informed that it is much better have tested, trusted robust code that only imple-

ments part A and part B then it is to have buggy, partially working code that attempts to get
into part C. Since students make use of their own engine for project 3, most tend to heed this
advice.
Students work alone for all of project 2. While group work is important for many aspects of

software engineering, including game development, developing the engine solo ensures students

1A naiad is the name for the aquatic larva of a dragonfly.
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have complete and deep understanding of both the game engine and the programming skills
needed to develop it – there is no way to “hide” behind a more experienced teammate. That is
not to say students are alone, however – discussing the project with other students is encouraged,
even for help in debugging each other’s code. The line is drawn at not allowing sharing of code
in that each student must write all the engine code him/herself.
All development is done in C++. Students are expected to be familiar with C++ from earlier

computer science classes, but are not expected to be experts in the language. While development
is done as “homework” outside of class, the requirements and design of Dragonfly are presented
in class, with discussions of design rationale, implementation choices and alternatives, and more
advanced features.
Individual classes, with high-level descriptions of attributes and methods, are provided

in the project writeup at http://www.cs.wpi.edu/~claypool/papers/dragonfly-projects/
proj2/.

4.2.1 Dragonfly Egg

Part A of the project is to construct the foundations of a game engine that provides the
following capabilities:

• Game initialization: Start and stop gracefully.

• Logging: Write time-stamped messages to a file.

• Object support: Add and remove game objects. Objects support 2d game world positions for
objects.

• Game loop: Run a game loop with: 1) A fixed update rate (e.g. 30 Hz), and 2) updates sent
to all objects each loop

To implement this functionality, students develop, code and test about a dozen base classes.
No visual depiction of the game is required for part A. Instead, all output is done via printing

to the screen or to a log file via the logfile manager functionality built into the game engine. As
suggested above, at the successful completion of part A, students do not have a game engine.
Instead, they have a robust, foundational code base they can build upon to get a functional
game engine in part B.

4.2.2 Dragonfly Naiad

Part B is to continue construction of the game engine, each student using their own code base
from part A, adding the following additional capabilities:

• Output: Support 2d, text characters with color. Provide a clean refresh each game loop.

• Input: Accept non-blocking keyboard and mouse input. Send input to interested game objects.

• Collisions: Provide a “solid” attribute for game objects. Detect collisions between solid objects.
Send an event to both objects involved in a collision.

• Misc: Provide deferred, batch removal of game objects. Support event filtering, where objects
register when interested. Provide support for an “altitude” attribute for game objects to
support layered drawing.

All of the above capabilities must be thoroughly tested, bug-free and ready for a game pro-
grammer to make a game (the students themselves, in project 3).

4.2.3 Dragonfly

Part C is to continue construction of the game engine, each student using their own code base
from part A and part B, adding the following additional capabilities:

• Sprites: Provide multi-character frames. Associate one or more frames with a game object.
Play frames in sequence to achieve animation. Support “slowdown” of animation to less than
one frame per game loop.

• Resource Management: Read sprite data from files. Provide bounding boxes for game ob-
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jects. Allow game objects to be larger than a single character (for movement and collisions).
Associate bounding boxes with sprites.

• Camera Control: Allow the game world to be larger than the screen, providing a “viewport”.
Enable free viewport movement around the game world, including the ability to follow one
object (e.g., the player’s avatar).

• Object Control: Support “velocity” for game objects with automatic updates.

• View Objects: provide an alternative (to game objects) object that supports “heads-up dis-
play” functionality.

• Misc: Gracefully handle a “kill” signal, as well as random number seeding.

As for project 2B, all of the above capabilities must be thoroughly tested, bug-free and ready
for a game programmer to make a game (the students themselves, in project 3).
For each part, students turn in a package with all code necessary to build their game engine,

including header files and a Makefile for building their engine. Game programmer code (i.e.,
code someone would write using their engine) is required to demonstrates the full functionality
of what they have built (so far). This can be more than one program, if needed. Documentation
is required to explain the platform, files, code structure, how to compile their engine and game
code, and anything else needed to understand (and grade) their game engine.

4.3 Project 3 – Dragonfly Spawn

In project 3, students use the Dragonfly game engine they built in project 2 to make their own,
original game from scratch. The end result is expected to be a robust (bug-free), playable, and
balanced game (it may even be fun).
Like a typical large game development effort, the project is broken into several milestones: plan,

alpha and final. Each milestone is submitted and graded separately, while all apply towards the
total project 3 grade. The intent of the milestones is to provide production guidance to yield a
fully-functional, complete, playable game built with their own game engine.
Students work in teams of two for project 3. Students are free to partition the work among

the team as they see fit, but all team members are encouraged to help (say, with design and
debugging) and be knowledgeable (in terms of how the game code executes) for all parts of the
game.
Development must be in C++ using their game engine from project 2. Under exceptional

circumstances (e.g., both partners not completing project 2b), students are allowed to use the
pre-made Dragonfly engine from project 1. No engine source code is provided, however, only the
pre-compiled engine.

4.3.1 Plan

Student teams provide a game plan within the first two weeks of the project. The plan doc-
ument provides a detailed description of the game they plan to build, including the technical
challenges it entails, a bit about any significant artistic aspects of the game, and the timeline to
successfully complete development in the time provided. In planning, students are asked to draw
upon experiences from other classes (e.g., other programming courses), to inform the creation of
the plan document. While the actual length of the plan is not a requirement, as a guideline the
plan is expected to be approximately 2-3 pages – much less and students have probably have
not supplied enough details.
For the plan submission, students turn in a written document.

4.3.2 Alpha

At alpha stage, the student games have all of the required features implemented, but not nec-
essarily working completely correctly. Game code must be tested thoroughly enough to eliminate
any critical gameplay flaws, but minor bugs or glitches may be present.
Games must compile cleanly and be runnable, even if all aspects of gameplay are not available
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from one program. Separate features of the game may be demonstrable from separate game code
programs (e.g., separate game programs illustrating a kind of weapon or a specific opponent).
Games are likely not yet be finally balanced nor the levels designed for all experiences (begin-

ning to advanced) of game player.
Games may contain some placeholder art assets. For example, in the alpha release, a simple,

non-animated square may be used for an opponent with the intent of creating a figure and frames
of animation for the final version.
For the alpha submission, students hand in a package with all the source code necessary to

build their game engines and their games. All header files must be included, as well as Makefiles
for building the games.

4.3.3 Final

The final version of all games has all game content complete – design, code and art. Games
must be tested thoroughly for bugs, both major and minor, removing all visual and gameplay
glitches. Game code must compile cleanly and be easily runnable. Upon startup, instructions
for the player on how to play must be readily available, and with clear indications on how to
begin play. Gameplay must be balanced, providing appropriate difficulty for beginners and/or
early gameplay, with increased difficulty as the game progresses. Games must have a clear ending
condition (i.e., winning or losing) and the player must be able to exit the game easily and cleanly.
For the final submission, students submit their engine and game, with necessary support files

and Makefiles. The typical READMEs are required, as well as DESIGN documents providing
all the details in the plan, but updated to reflect the games as actually built. For example, the
functionality, milestones and work responsibilities need to be updated from the plan to reflect
the development. Major deviations from the original plan must be be noted.

5 The Dragonfly Approach

A course designed around the Dragonfly approach, building a game engine from scratch using
the projects detailed in Section 4, has been incorporated into the yearly course offerings at our
University. The educational objectives of the course are:

(1) Understand the structure and design of a game engine
(2) Demonstrate understanding of a game engine from a game programmer’s perspective by

extending a simple game
(3) Use a game engine to create a complete, original game from scratch
(4) Use iterative design and development practices to create a playable game
(5) Understand how software engineering techniques can be applied to creating the parts of

a game engine
(6) Gain experience and develop skills in working in a team on a software project of significant

size, with a short deadline

The course is taken by juniors, with students typically having about four computer science
programming courses before this course. These background courses provide an introduction to
programming, object-oriented design concepts, system programming concepts, algorithms and
data structures. Students have used C++ in at least two of the courses, but about half the
students claim to be more comfortable with Java than with C++. A small set of the students
(about 1/3) have already had software engineering, another junior level course.
The in-class material begins with about a week of introductory material on game engines and

specific C++ concepts needed (somewhat as a review, but some of which is new), but proceeds
quickly to concepts specific to the design and development of Dragonfly.
The first 2/3rds of the course has in-class material specific to the Dragonfly engine, with

generalities made to other engines where appropriate. The last 1/3rd of the course focuses on
other technical topics that are not incorporated into the student’s game engines. These include
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iterative development (which is helpful for students as they develop games using their engines as
described in Section 4.3), performance tuning (benchmarking, profiling and code optimizations)
and pathfinding (including A*).
For projects, the first project (creating the tutorial game and extending it, Section 4.1) takes

about 1/6th of the course. The second project (building the Dragonfly game engine, Section 4.2)
takes a bit over 1/2 of the course. The third project (creating a game using their engine, Sec-
tion 4.3) takes about 1/3rd of the course.
There are two short, in-class exams. The exams are designed to evaluate whether or not

students learned some of the high-level concepts taught in the course that may not have been
adequately tested in the programming projects because: 1) students are able to get their code
working if they persist enough and with enough help, and 2) programming alone does not
adequately reflect understanding of the concept.
The breakdown for overall course grading is depicted in Table 1. The projects make up the bulk

of the course grade, with exams an appropriately small fraction. Still, the exam grades comprise
approximately an overall letter grade. The projects themselves are dominated by building the
engine, but understanding the engine from the game programmer’s perspective (project 1) and
making a game from scratch (project 3) are needed to pass the course. Group work, done only
for project 3, is small relative to the amount of solo work, making it nearly impossible for weaker
students to “hide” if their programming skills or effort are not sufficient.

Table 1. Grade breakdown for Dragonfly course

Item Name Percent
Project 1 Catch a Dragonfly 10%
Project 2 Dragonfly (Egg, Naiad, Dragonfly) 50%
Project 3 Dragonfly Spawn (Plan, Alpha, Final) 25%
Exams Mid-term and Final 15%

6 Results

This section presents the results from using Dragonfly projects from Section 4 in the course
described in Section 5. Subsections include: an overview of the offerings (Section 6.1), analysis
of the grades (Section 6.2), analysis of the degree to which the course objectives were met
(Section 6.3), and examination of the student responses to the course and projects (Section 6.4).

6.1 Overview

The Dragonfly course has been taught twice, once in Spring 2012 and once in Fall 2012. Both
offerings were identical in terms of project assignments and very similar in terms of in-class
lectures. Enrollment was 14 for the first offering and 24 for the second offering. The course
consisted primarily of juniors, as shown in Table 2, with demographics of each offering following
those of the university as a whole, predominantly male (91%) and white (68%).

Table 2. Enrollment for Dragonfly courses

Offering Fresh Soph Jnrs Snrs Ttl
Spring 0 2 12 0 14
Fall 0 3 17 4 24
Percent Total 0% 13% 76% 11% 100%

Table 3. Grades for Dragonfly courses

Offering A’s B’s C’s NR’s
Spring 6 5 0 3
Fall 9 8 5 2
Percent Total 39% 34% 13% 13%

6.2 Grades

Table 3 lists the grades students earned for the two offerings, broken down by number of each
letter grade in the columns with a total and overall percentage in the bottom row. The ‘NR’
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field stands for “no record”, which indicates a student did not earn a C or higher for the course.1

Generally, those that earned passing grades achieved some measure of success in their game
engine and game. Those that earned B’s had a working game engine (through project 2B), but
typically few, if any, of the features in the full-featured game engine. Those that earned A’s
completed much, if not all, of the full-featured game engine and created a successful game with
it. The high percentage of A’s and B’s suggests most students did well in the bulk of the course.
Given the relative similarity in overall grades for the two offerings (more A’s than any other

single grade and A’s and B’s dominant), for all subsequent grade analysis the scores for the two
offerings are combined.
Table 4 lists a breakdown of the grades for Project 1 (extend a simple game), Project 2B

(build a functional game engine), Project 2C (build a full-featured game engine), and Project
3 (build a game from scratch). The ‘NC’ field indicates “no credit” in that not enough of the
project was complete to garner a passing grade.

Table 4. Grades for Dragonfly projects

Assignment A’s B’s C’s NC’s
Project 1 26 7 4 1
Project 2B 22 9 3 4
Project 2C 10 2 6 20
Project 3 18 11 6 3

Table 5. Assessment for Dragonfly projects

Assignment Completed Good Excellent
Project 1 97% 87% 68%
Project 2B 89% 82% 58%
Project 2C 47% 32% 26%
Project 3 92% 76% 47%

Subjective assessment of the project grades provides insights into student accomplishments,
shown in Table 5. Projects that earned a C or higher are labeled “completed”, projects that
earned a B or higher “good”, and projects that earned an A “excellent”.
From Table 5, most students were able to get a functional game engine, shown by an 89%

completion rate for project 2B, with a majority of them (82%) good. There was less success at
getting a full-featured game engine, shown by a 47% completion rate for project 2C, but most of
those that did complete 2C were good and half of them excellent. The large majority of student
were able to build games using the game engine, shown by over 90% of the students completing
project 1 and project 3. Most of these projects were good and most of the project 1’s were even
excellent.

6.3 Objectives

The degree to which the course objectives (see Section 5) are met is assessed largely through
students’ performance on the projects.
Objective 1: Understand the structure and design of a game engine and Objective 5: Under-

stand how software engineering techniques can be applied to creating the parts of a game engine.
The software engineering techniques (e.g., various design patterns) are presented in class ma-
terials and then applied by the students in project 2B and project 2C. These objectives are
demonstrated by project 2B, where students build a functional game engine. The large majority
(89%) of students meet these objectives and meet them well (82% good). Additional demonstra-
tion is achieved by about half (47%) the students that completed project 2C (the full-featured
game engine).
Objective 2: Demonstrate understanding of a game engine from a game programmer’s perspec-

tive by extending a simple game. This objective is demonstrated by project 1 where students
complete a tutorial making a simple game, then extended the game functionality in a manner
of their choosing. The overwhelming majority (97%) of students met this objective, with most
meeting it quite well (87% good, 68% excellent).

1At our University, courses with an NR do not appear on a student’s transcript.
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Objective 3: Use a game engine to create a complete, original game from scratch, Objective 4:
Use iterative design and development practices to create a playable game and Objective 6: Gain
experience and develop skills in working in a team on a software project of significant size, with a
short deadline. Project 3 has iterative development with the design and development proceeding
through different milestones (plan, alpha, and final). These objectives are demonstrated by
project 3, where students build a game of their own design using their own game engine (project
2). The overwhelming majority (92%) of students met this objective, while most of them did
this well (76% good).

6.4 Student Responses

Subjective responses from the students themselves were obtained by anonymous surveys, dis-
tributed and filled out during class time at the end of the course.
The first question is “My overall rating of the quality of this course”. Responses are provided on

a 5-point scale, with 1 labeled “very poor” and 5 labeled “excellent”. Other points are unlabeled.
Figure 2 depicts the distribution of responses to question 1. The x-axis in the numeric response
and the y-axis is the percentage of the total responses. Each bar represents the percentage of
respondents that gave the indicated numeric score. The blue asterisk (*) shows the mean. The
responses being all positive, with the mode “excellent” and the mean 4.5, suggests the overall,
the course has value.
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The second question is “The educational value of the assigned work was”, with responses
provided on the same 5-point scale as for the first question. Figure 3 depicts the distribution of
responses to question 2, with axes and trendlines as for Figure 2. Here, the responses are even
more positive, with the mode “excellent” and the mean 4.7, suggests the game-engine focus of
the assigned work is of high educational merit.
The third question is “The amount I learned from this course was”. Responses are provided on

a 5-point scale, with 1 labeled “much less”, 5 labeled “much more” and other points unlabeled.
Figure 4 depicts the distribution of responses to question 3, with axes and trendlines as for
the previous figures. The responses are all positive, with most students near the “much more”
end of the scale. The responses here complement the results from questions 1 and question 2 in
indicating students learned a lot.
The fourth question is “On average, what were the total hours you spent per week on all

activities related to this course.” Responses are provided on a 5-point scale, with labels in
hourly ranges of: 0-8, 9-12, 13-16, 17-20 and 21+. Figure 5 depicts the distribution of responses
to question 3, with axes and trendlines as for the previous figures. Since in-class lectures are
only 4 hours a week, with no assigned reading, most of the course time reported is spent on the
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projects. The mean, 15.9 hours, is computed by taking each response as the middle of each bar,
and using 22.5 for the 21+ bar. There is a fairly broad and uniform distribution of hours spent.
It should be noted that Worcester Polytechnic Institute (WPI) is unusual in that students take
only 3 courses at a time for a 7 week term (there are 2 terms each semester), as opposed to
most Universities where students take 5 or 6 courses at a time for a 14 week semester. Since
WPI’s expected number of hours for students to spend on each class is about 17 hours per week
(although most classes fall under this number), the data suggests this course meets the target
and is above the university average. For most, the hourly average is manageable for a full-time
student.
The fifth question probes student opinions on an alternative game-engine strategy – namely,

learning from the source code of a commercial engine (e.g., Quake or C4): “I would rather build
my own game engine than have projects based on a commercial game engine.” Responses are
provided on a 5-point scale, with 1 labeled “strongly disagree”, 5 labeled “strongly agree” and
other points unlabeled. Figure 6 depicts the distribution of responses to question 5, with axes
and trendlines as for the previous figures. The distribution of responses and the mean (4.0)
suggest students prefer to build a game engine from scratch rather than try to understand, and
then extend or modify, an existing commercial engine.
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The sixth question attempts to ascertain attitude students have towards working with text-
based graphics, rather than “real” graphics: “I would rather use text for Dragonfly rather than
use r̈eal2̈d graphics.” Responses are provided on the same 5-point scale as for question 5. Figure 7
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depicts the distribution of responses to question 5, with axes and trendlines as for the previous
figures. The distribution of responses is quite broad with about an equal number of students
being content with the text-based graphics as those that are discontent (the mean is 3.3). This
suggests there is not uniform resistance to students in using text-based graphics despite their
lack of significant use in commercial games, and considerable support from many students.
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The seventh question gathers student opinions on how the projects improved their C++ pro-
gramming skills: “I improved my C++ skills in building Dragonfly and making my game.”
Responses are provided on the same 5-point scale as for question 6. Figure 8 depicts the dis-
tribution of responses to question 6, with axes and trendlines as for the previous figures. The
distribution of responses is heavily skewed to the right (the mean is 4.4), with nearly all students
believing the projects improved their C++ programming. While this is a subjective opinion, the
results are encouraging since strengthening programming was a major goal of the Dragonfly
approach.

7 Discussion

While the approach of developing a game engine has merits, there are a few issues worth dis-
cussing beyond those described thus far.
If students fall behind in developing the Dragonfly game engine, they may never recover. For

example, it is impossible to successfully complete project 2B without having completed 2A, and
likewise for 2C without 2B. Although we have not tried it, this shortcoming could be mitigated
by providing those students that fail to complete project 2A with a working implementation
they could use for 2B. This is similar to what we do allow for Project 3 – namely, if students
have not developed their own game engine to sufficient capabilities (or sufficient robustness),
they are allowed to use our Dragonfly implementation. Note, however, in this case they do not
get the Dragonfly source code but instead get a pre-compiled library and header files they can
then use for the game code. However, in the case of 2B, not providing the source code for project
2A (and 2B) is more problematic, since in doing 2B (and 2C), students need to re-factor their
code with enhanced functionality.
The code base affords many opportunities for advanced computer science topics, also. For

example, Dragonfly can be extended to support various artificial intelligence techniques, such as
pathfinding or flocking. Or, multiplayer game support can be provided in Dragonfly by adding
networking support, either client-server or peer-to-peer. These advanced topics can be used
independently in appropriate courses, or students may use their own Dragonfly code base for
courses that appear in sequence.
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The benefits of focusing on a game engine, both for the motivational reasons (i.e., computer
games) and for the coding challenges, can be obtained by alternate means. One alternate ap-
proach is to use a commercial game engine (e.g., Unity) for reference with projects for building
a game using that engine. In doing so, students get the benefits of a game engine as motivation,
with alternative benefits of developing skills in understanding a complex application program-
ming interface (API). Programming skills can still be strengthened by building games using
this engine. Commercial engines that provide source code (e.g., Unreal Tournament) provide
the additional benefit of exposing students to a large, complex code base. In earlier offerings,
we have used Terathon Sofware’s C41 engine in our course, with projects similar to project 1
(Section 4.1) and project 3 (Section 4.3). The downside of using such a large code base and API
is students often come away with less of a full understanding. Moreover, there is a steep learning
curve to get even partial understanding, making it difficult for students that are slow to start
to ever master the material in the course. While using open source game engines, such as Grit,2

may have appeal due to their costs (free), the downsides are the same as for commercial engines
since the issue is really about “production quality” engines and not whether or not they are
freely distributed.

8 Conclusions

Computer science students’ passion for games can be harnessed in many ways. Game-centric
projects provide a ready motivator for students to explore and master difficult computer science
topics. While there are many examples of educators having students build games or build parts
of games to learn computer science topics, there are fewer that expose students to the pro-
gramming richness of a game engine. Development of a game engine, a code base that supports
making computer games, provides opportunities for strengthening programming skills with soft-
ware patterns, object inheritance, real-time events handling, data structures, I/O debugging and
testing and performance tuning. Game developing using an engine re-enforces this knowledge
and provides portfolio material valuable for post-graduation employment.
This paper describes our Dragonfly approach, where students program a text-based game

engine from scratch. Implementation projects proceed in phases, where students first build a
stock game using our engine, proceed to develop their own engine through three sub-projects,
then use their engine for a game of their own creation. Dragonfly has been used in two course
offerings thus far, providing results for over 35 students.
Most students were able to successfully build a complete the Dragonfly] game engine, with

about a quarter of them having excellent, full-featured game engines. These results suggest the
objectives of the course, for students to understand game engines and apply software engineering
techniques to their development, was successful. The majority of games made with the engine
were good, suggesting the objective of students understanding a game engine from the game
programmer’s perspective was met. Student responses indicated they learned a lot from the
course and greatly improved their C++ skills in making their game engines and games.
Continuing our efforts, the intent is to complete a book on Dragonfly (a draft is complete),

suitable for classroom use, but also useful for students that may want to learn to build a game
engine on their own. The structure of the book proceeds much as does the class material, pro-
viding details on the general functions of a game engine, with specific design details pertaining
to Dragonfly. Once published, the book will include access to the Dragonfly tutorials, sample
games and utilities and documentation on the engine as aids for students doing project 1 or
project 3. Documentation generated by Doxygen is already online.1 For instructors,2 the com-
plete Dragonfly source code is provided, with instructions on how to build the engine.

1http://www.terathon.com/c4engine/
2http://gritengine.com/
1http://web.cs.wpi.edu/~claypool/papers/dragonfly-projects/include/
2Some form of verification will be required.
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