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Abstract—Networks and local systems add delays to user
actions in computer games, increasing the time between user
input and rendering on the screen. Top-down studies using games
have helped understand the impact of delays, but often do not
generalize nor lend themselves to analytic modeling. Bottom-up
studies isolating user input can better generalize and be used in
models, but have yet to be applied to computer games. Our work
builds a custom game for studying delay and the fundamental
user input of selecting a moving target with a mouse. Analysis
of data from a large user study shows target selection time is
exponential with delay, and provides for an analytic model based
on delay and the interaction between delay and target speed.

I. INTRODUCTION

Real-time games require players to make many time-

sensitive actions that can suffer when the computer responses

lag behind player input. Even delays as small as millisec-

onds can hamper the interplay between players’ actions and

intended results. For example, delay when aiming a virtual

weapon with a mouse can make it difficult for a player to hit

a moving target in a shooting game, hurting the player’s score

and degrading the quality of experience.

While there are established methods to compensate for

delays [1], including system-level treatments (e.g., real-time

priorities), latency compensation algorithms (e.g., dead reck-

oning) and even game designs to mitigate delay (e.g., delayed

avatar response), an understanding of how latency affects

fundamental player actions in games is needed in order to

choose the most effective delay compensation techniques.

Broadly, there two different approaches to research in un-

derstanding the impact of delay on computer games, depicted

in Figure 1. Studies using specific games are a top-down

approach, extending knowledge of delay and games one game

at a time. Such studies have tried to generalize to game genres

(e.g., first person shooters) [2]–[7], but game design and game

engines may obfuscate important system details, making it

difficult to pertain to other games and to analytic modeling.

An alternate approach is bottom-up, studying fundamental

user input differentiated by actions (e.g., target selection) or

hardware (e.g., mouse, joystick). Contributions to user input

and delay has the potential to generalize to many games and

even other interactive applications and allows for building

analytic models that can predict the effects of delay for a

wide-range of games and delay conditions.

Fig. 1: Research in games and delay. Two approaches – top-

down from existing games and bottom-up from user input.

While foundational studies of user input [8]–[10] have

shown promise in modeling user interaction for computer

systems, including games [11], such studies have not focused

on game actions (e.g., moving target selection with a mouse)

nor have they focused on delay ranges present in networked

games. Ideally, game designers and system developers would

have a model as far reaching and robust as Fitts’ Law [8] –

an ergonomic model for the time it takes for a user to select

a target of a given size at a certain distance – but accurate for

fundamental game actions in the presence of delay. Our work

takes a step towards providing such a model.

We design and implement a game that isolates the funda-

mental action of selecting a moving target with a mouse and

controls the target speed and the delay between the user input

and the rendered action. The game records the time it takes

the user to select the target and gathers quality of experience

ratings provided by the user. We deploy the game in a user

study with over 30 participants, with added delays ranging

from 0 to 400 milliseconds and target speeds ranging from

150 to 450 pixels/second.

Analysis of the results shows the time to select a moving

target with the mouse increases exponentially with delay. The

time to select the target does not vary with target speed

for low delays, but there are significant interaction effects

between added delays and target speeds for high delays. User

opinions on the quality of experience (responsiveness) show a

pronounced linear decrease even for modest delay increases.



Lastly, we derive an accurate analytic model for the average

time to select a moving target with a mouse based on delay

and target speed. The model is exponential with delay and

includes an interaction term for delay and target speed.

The rest of this paper is organized as follows: Section II

describes work on user input modeling related to our work;

Section III describes our methodology, including developing

our game and conducting a user study; Section IV analyzes

the user study results for overall trends and presents our

model; Section V relates our results to earlier work and other

systems; and Section VI summarizes our conclusions and

outlines possible future work.

II. RELATED WORK

This section presents related research in user input for target

selection and delay.

A. Fitts’ Law

Paul Fitts pioneered early seminal work in the area of

human-computer interaction and ergonomics in the form of

creating Fitts’ Law [8]. With some simplification,1 Fitts’ Law

describes the time (T ) to select a stationary target based on

an index of difficulty (I):

T = k · I (1)

where k is a constant specific to the task at hand. The index of

difficulty (I) is proportional to: 1) the gap distance (G) from

the source to the target, and 2) the width of the target (W ):

I = log
2

(

G

W

)

(2)

Combining Equations 1 and 2, the time to select a target

based on Fitts’ Law is approximately:

T = k · log
2

(

G

W

)

(3)

where G and W are known and the constant k is determined

empirically.

While Fitts developed and validated his law based on hand

movements with a stylus, Fitts’ Law has been shown to be ap-

plicable to a variety of other conditions (e.g., underwater [14])

and input devices (e.g., eye tracking [15]).

B. Fitts’ Law with Two Dimensions

Fitts’ Law only includes one dimension – the distance from

the source to the target. To apply Fitts’ Law to computer

users selecting virtual targets with a mouse, subsequent en-

hancements examined the applicability of Fitts’ Law to two

dimensions [10], requiring a modest change in the “effective”

width. For example, the W in Equation 3 is replaced by

the smaller of the width and height for a rectangular target,

although target shape was found to be largely irrelevant.

1To provide comparative clarity among proposed models, some constants
and minor terms are ignored in this and subsequent models. The interested
reader is encouraged to refer to the original sources for the full models.

Since many modern uses of Fitts’ Law are for computer

devices with two dimensional displays, MacKenzie and Bux-

ton’s [17] investigation of Fitts’ Law provided guidelines for

use of the law in evaluating pointing devices.

C. Fitts’ Law with Moving Targets

Fitts’ Law also only applies to stationary targets. This is

entirely appropriate when applied to, say, a PC where a user

is selecting a button with the mouse. However, this is less

appropriate for a dynamic interface, such as a computer game,

where the target is moving on the screen.

Jagacinski et al. [18] extended Fitts’ Law with a revised

index of difficulty (I , see Equation 2) that explicitly incorpo-

rates velocity and which predicts the overall pattern of target

selection times better than the original index of difficulty. Their

revised model for the time (T ) to select a moving target at gap

distance (G) based on the target’s speed (S) and width (W )

is:

T = k1 ·G+ k2 ·
S

W
(4)

where k1 and k2 are constants determined empirically.2 Note,

Jagacinski’s model suggests target selection time increases

linearly with target speed.

Hoffmann [19] refined Jagacinski’s model with:

T = k · log
2

(

G + S

W − S

)

(5)

where S, G and W are as for Jagacinski and k is an

empirically derived constant. Note, although it is not imme-

diately obvious, Hoffman’s model suggests target selection

time increases exponentially with target speed, effectively

log2(
1

1−S
). While Hoffman showed his new model fit the data

from Jagacinski’s experiments somewhat better, the model lost

some intuition and simplicity when compared to Jagacinski’s

model.

Hajri et al. [9] refined Hoffmann’s model by separating the

index of difficulty into one that accounts for target speed:

I = log
2

(

G±
S

k

W

2
−

S

k

)

(6)

where k is, again, an empirically derived constant. Note, the ±

generalizes from + in Hoffmann’s model since the target may

be moving towards (i.e., −) or away from (i.e., +) the source.

A user study showed Hajri’s model fit the experimental data.

D. Fitts’ Law with Transmission Delay

The above models have assumed a constant, low delay – i.e.,

a system with only the delay inherent in the local electronics

and software. However, in many modern systems, there are

not only delays from the local computer system but also from

network transmissions and processing on a remote computer

system. This is particularly true in many network games where

an authoritative server is responsible for processing all actions

before rendering on the local client screen.

2Jagacinski separated the gap distance (G) from the target width (W ), much
as did other early enhancements to Fitts’ Law.



Suitable for this environment, Hoffman [12] revised Fitts’

Law with delay:

T = k1 + k2 ·D · log
2

(

G

W

)

(7)

where D is the delay, G and and W are the target gap distance

and width, respectively, and k1 and k2 are empirically derived

constants. Hoffmann’s model shows a multiplicative effect

between the index of difficulty and the delay and suggests

target selection time increases linearly with delay.

Hoffman’s experiments using one-dimensional input (a knob

to move a pen from the source to the target) shows users have

two types of responses in the presence of delay: 1) move-and-

wait where a user provides input, then stops and waits for it to

occur, repeating as necessary; and 2) continuous where a user

provides continuous input in the presence of delay, adjusting

as necessary without stopping. For low delays, users generally

provide continuous input while for high delays, users have

move-and-wait input. Hoffman’s experiments found the delay

inflection point around 700 milliseconds.

Brady [13] experimented with target selection and delay,

considering index of difficulty but not deriving experimental

parameters for Hoffman’s model (Equation 7). Brady also

analyzed the subjective user experience, finding a strong

inverse linear relationship over the range of delays studied

(from 0 to about 200 milliseconds).

III. METHODOLOGY

To model user input and delay, we: 1) developed a game

(Puck Hunt) that enables study of user input with controlled

delay (Section III-A); 2) conducted a user study to evaluate

the impact of a single user action with delay (Section III-B),

and 3) analyzed the results of the user study through graphs

and a model (Section IV).

A. Game

Fig. 2: Puck Hunt. Users click on moving target (puck) with

mouse cursor (red ball). Game adds delay to mouse input and

varies target speeds between each round.

We designed and developed a custom game called Puck

Hunt3 that allows for the study of a single user action

with controlled amounts of delay. In Puck Hunt, depicted in

3The name is a pun on the classic game Duck Hunt (Nintendo, 1984).

Speed (pixels/second)

Slow 150
Medium 300
Fast 450

(a) Target speeds.

Delay (milliseconds)

0, 25, 50, 75
100, 125, 150, 175
200, 300, 400

(b) Added mouse input delays.

Figure 2, the user proceeds through a series of short rounds,

where each round has a large black ball, the puck/target, that

bounces around the screen. The user moves the mouse to

control the small red ball (a.k.a., the cursor) and attempts to

select the target by moving the ball over the target and clicking

the mouse button. Once the user has successfully selected the

target, the target disappears and a notification pops up telling

the user to prepare for the next round. Thereupon pressing

any key, a new round starts, with the target at a new starting

location with a new orientation and speed. The user is scored

via a timer that counts up from zero at the beginning of each

round, stopping when the target is selected.

The action chosen – selection of a 2d moving target with

a mouse – is common to many PC game genres, such as first

person shooters (FPS) (e.g., Call of Duty, Activision, 2003)

and multiplayer online battle arenas (MOBA) (e.g., League of

Legends, Riot Games, 2009).

Puck Hunt is written in C++ using OpenGL with support

from the Angel 2d game engine4 to minimize the latency

inherent in the software. Puck Hunt runs in fullscreen mode at

1080p resolution (1920x1080 pixels). The target is 100 pixels

in diameter and the mouse cursor (the red ball) is 25 pixels in

diameter.

Each round, the target moves with one of three possible

speeds in Table Ia. Effectively, these speeds create levels of

difficulty. The game adds a controlled amount of delay selected

from the set in Table Ib. The delay is added to all mouse

movements and button clicks for the duration of the round. The

set of delays is chosen so as to explore in detail delays up to

200 ms (common in many broadband networks and systems),

while allowing some exposure to larger delays (common in

some wireless and wide-area networks). Each delay & speed

combination appears 5 times, but the entire set of combinations

is shuffled into a random order.

Exactly once for each combination of delay & speed, the

user is asked to rate the quality of experience (QoE) based on

the responsiveness during the round. The game pauses until

the user selects a choice, 1 (low) to 5 (high).

Every 30 rounds, the game stops for a minimum of 20

seconds to allow the user to rest/regain concentration, with

a countdown timer shown to the user via a popup window.

B. User Study

Our user study was conducted in a windowless computer

lab with bright, fluorescent lighting. The computers were Dell

PCs with Intel i7-4790 4 GHz processors, 4 GB GeForce GTX

960 graphics cards and 16 GB of RAM, running Microsoft

Windows 7. The monitors were 24” Dell U2412M LCDs with

4http://angel2d.com/



a native resolution of 1920x1200 pixels and a refresh rate of

59p Hz.

Participants were volunteers solicited through WPI email

lists, incentivized with a raffle for a $25 gift card.

First, users heard a scripted brief about the study and signed

an Institute Review Board (IRB) consent form. Next, users

were asked to make themselves comfortable at a computer

by adjusting chair height and monitor angle/tilt so as to be

looking at the center of the screen. Users were encouraged to

shift the mouse to whichever hand they preferred.

Users then completed a survey about demographics and

gaming experience followed by launching the game.

Play commenced immediately, but the first two rounds were

used for practice only and the results were not recorded. Play

then proceeded through all 5x shuffled combinations of delay

& speed (Table Ia and Table Ib), with one QoE question for

each delay & speed combination and a forced pause every

30 rounds. In total, users played 165 recorded rounds each,

which took about 15 minutes including answering questions

and pausing.

Note, the delays in Table Ib added by Puck Hunt are in

addition to any delays inherent in the base computer system.

Since such base delays have been shown to be significant [20],

we measured the base delay for mouse actions on our lab

computers using a Blur-busters type technique.5

A bread board with an LED was connected via a wire

soldered to a mouse so that the LED lit up when the button was

clicked. A high frame rate camera (a Casio EX-ZR200) filmed

the player clicking on the QoE prompt, recording the action at

1000 f/s. By manually examining the individual video frames,

the frame number when the light appears with the button click

is subtracted from the frame number when the QoE prompt

shows the input, giving the base delay.

Fig. 3: Measuring base delay.

Figure 3 depicts the measurement method. The mouse

is poised over the QoE prompt in frame 5175. In frame

5176, the button has been pressed indicated by the lit LED

on the breadboard. The input is not displayed on the QoE

prompt until frame 5277. Since there is one video frame each

5http://www.blurbusters.com/gsync/preview2/
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Fig. 4: Selection time versus delay, grouped by target speed.

millisecond, subtracting 5716 from 5277 gives a base delay of

101 milliseconds.

The measurement method was repeated 5 times, resulting

in base delay values of 93, 99, 101, 101 and 112 milliseconds.

Hence, 100 milliseconds is added to all delay analysis.

IV. ANALYSIS

Thirty-two users participated in the study. Ages ranged from

18-26 years with a mean and median of 21. Twenty-three

identified as male, 8 as female, and 1 did not specify. The mean

self-rating as a PC gamer (scale 1–5) was 3.6, showing a slight

skew to having “high ability”. Exactly half the users played 6+

hours of computer games per week, about the same fraction

that used a computer (PC/Mac) with a mouse 6+ hours/week.

A. Selection Time - Measurement

We first assess the time it takes for the player to select a

moving target with a mouse in the presence of delay.

Figure 4 depicts selection time versus delay, analyzed by

target speed. The x-axis is the total input delay (added delay

+ base delay) and the y-axis is the time to select the moving

target. There are three trend-lines, one for each target speed

tested. Each point is the mean time for all users for that delay

& speed combination, shown with a 95% confidence interval.

Overall, there is an increase in mean selection time as delay

increases. This increase appears exponential over the range of

delays tested. For delays under 200 milliseconds, the speed

of the target does not impact mean selection time. However,

starting at delays of 225 milliseconds (for fast targets) and

400 milliseconds (for medium speed target), the faster speed

targets become harder to select than the slowest speed targets.

At the extreme delay (500 milliseconds), the fast targets take

5x longer to select than when there is minimal delay (100

milliseconds) and even the slow targets take over 2.5x longer

to select.

Figure 5 depicts selection time versus speed, analyzed by

delay. The x-axis is target speed in pixels per second and the

y-axis is the time to select the target. There are five trend-

lines, one for each of the total input delays (added delay +

base delay).6 Each point is the mean time for all users for that

6The other delays tested are not shown to keep the graph readable.
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delay & speed combination, shown with a 95% confidence

interval. Overall, there is an increase in selection time as the

target speed increases. This increase appears mostly linear

for the range of target speeds tested, but is somewhat non-

linear (perhaps exponential) for delays above 300 milliseconds.

Delay impacts the selection time for all target speeds, but is

most pronounced for the highest target speeds as seen by the

diverging lines. As seen in alternate form in Figure 5, for

delays of 200 milliseconds and under, the lines are flat – the

speed of the target does not impact mean target selection time.

Moving target selection requires dexterous hand-eye coor-

dination. Thus, one confounding effect to any model of target

selection is the skill of the user. Users that spend more time

on the computer, in general, and more time playing computer

games where moving target selection is common, especially,

are likely more skilled in this task.

For our study, users provided a self-rating of PC gamer skill,

from 1 (low) to 5 (high). Based on our user sample, we triaged

users into low skill (6 users with rating 1-2), medium skill (15

users with rating 3-4) and high skill (12 users with rating 5).

Figure 6 depicts selection time versus delay for the fast

targets only, analyzed by self-reported skill. The axes are as for

Figure 4. There are three trend-lines, one for each skill group.

Each point is the mean time for all users with that skill for

fast speed targets for that delay, shown with a 95% confidence

interval. Overall, the increase in mean selection time as delay

increases holds for all skill groups. For delays under about 300

milliseconds, all skill groups perform comparably. However,

there is clear separation of the skill trend lines for high

delays, with the most skilled group being affected the least

and the least skilled group the most. At the extreme delay (500

milliseconds), the least skilled users take about 3x longer to

select the target than the most skilled users.

B. Selection Time - Model

While analysis of trends for moving target selection times

with delay provides valuable insights for game researchers and

developers, analytic models are more flexible at representing

the relationships. With this goal in mind, we modeled the mean

time to select a moving target with delayed mouse actions.
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TABLE II: User study data values used for standardization.

Factor Mean StDev
Delay 245 milliseconds 114
Speed 300 pixels/second 122

The previous analysis shows users’ mean selection times

trend upward with increased delay. The observed curvature

corresponds to possibly a linear, but more likely an exponential

distribution. The selection times trend with target speed is

less clear – for the range of speeds tested, target speed has a

negative impact on selection time for large delays, but almost

no effect for small delays. This points to important interactions

between speed and delay to incorporate into a model.

Thus, we propose modeling the time to select a moving

target with a mouse (T ) with exponential terms for delay (D)

and speed (S), as well as an interaction term:

T = k1 + k2e
D
+ k3e

S
+ k4e

D
e
S

(8)

where k1, k2, k3 and k4 are constants determined empirically

through user study. We standardized our user study data7 using

the values in Table II.

Fitting a regression model to the standardized data8 yields

an adjusted R2 of 0.97, F-stat 328 and p < 2.2× 10−16. The

simplified final model for the time to select a moving target

with a delayed mouse (T ) is:

T = 1 + 0.2e
d
− 0.04e

s
+ 0.1e

d
e
s (9)

where d and s are the standardized delay and speed, respec-

tively: d = D−245

114
and s = S−300

122
. All terms are significant

at p < 0.001, except the main effect of speed (p < 0.2).

C. Mouse Clicks - Measurement

Another problem reported by some Fitts-type user studies is

that an “aggressive” user, clicking as rapidly as possible, can

select the target faster, albeit with more clicks that “miss”. For

many computer games, missing a target can have a cost (i.e.,

virtual bullets). In our case, all clicks above one per target are

misses.

7Subtracting the mean and dividing by the standard deviation.
8Using R, https://www.r-project.org/
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Figure 7 depicts mouse clicks versus delay, analyzed by

target speed. The x-axis is the total input delay and the y-axis

is the number of mouse clicks needed to select the moving

target. There are three trend-lines, one for each target speed

tested. Each point is the mean number of mouse clicks for

all users for that delay & speed combination, shown with

a 95% confidence interval. Overall, there is an increase in

mean mouse clicks as delay increases. Remarkably similar to

selection time, clicks increase exponentially over the range of

delays tested. For delays under 200 milliseconds, the speed

of the target does not impact the number of clicks. However,

starting at delays of 225 milliseconds (for fast targets) and

400 milliseconds (for medium speed target), the user misses

more for faster speed targets than for the slowest targets. At

the extreme delay (500 milliseconds), users miss about 2⁄3 to
4⁄5 of the time for slow and fast targets, respectively.

The performance of the users in Puck Hunt can be compared

to users in commercial computer games. A previous study [7]

with Unreal Tournament (UT) 2003 (Atari, 2002) recorded the

hit fraction versus delay, where users tried to hit a moving

avatar with a high precision weapon. Figure 8 depicts the

results. The x-axis is the total input delay and the y-axis is

the hit fraction (i.e., for Puck Hunt, this is 1 divided by the

number of mouse clicks). There are two trend-lines, one for

UT 2003 and one for Puck Hunt, averaged across all target

speeds. Overall, the two trend-lines follow the same pattern,

decreasing approximately linearly with an increase in delay.

The Puck Hunt hit fractions are significantly higher than the

UT 2003 hit fractions, but this may be because the UT 2003

avatar was controlled by a human and moved unpredictably,

while the Puck Hunt target moved with constant velocity.

D. Comparison

In order to better understand the impact of delay and target

speed on the time to select a moving target with a mouse, it

is helpful to compare the results to user studies from network

games. Previous work has found the effects of latency depend

upon user in-game perspective [6]. The game perspective

defines how a user views the game world on a screen.

With an avatar-interaction perspective, the user interacts

with the game through a single representative character, called

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

H
it
 (

fr
a
c
ti
o
n
)

Delay (milliseconds)

UT 2003
Puck Hunt

Fig. 8: Hit fraction versus delay, grouped by game.

the avatar. Games with an avatar-interaction typically have

either a first person perspective where the user sees the

game world through the eyes of the avatar, or a third person

perspective where the user follows an avatar in the virtual

world. First person shooter (FPS) games, role-playing games

(RPGs), sports games and racing games are all examples of

game genres that have an avatar-interaction perspective. These

game genres often differ in the perspective – for example, FPS

games have a first person perspective while RPGs typically

have a third person perspective.

With an omnipresent perspective, the user has the ability to

view and interact with different aspects of the game world.

The user is said to be omnipresent in that his/her actions have

a more global influence than actions in an avatar model. The

perspective of games with the omnipresent interaction model

is often variable, giving users an aerial perspective to provide a

bird’s eye view of the virtual world, but also allowing users to

zoom in to a third person perspective to provide fine grained

control over individual resources. Real-time strategy games

(RTS) and construction and simulation games are examples of

game genres with the omnipresent perspective.

In order to compare the effects of delay across games, user

objective performance results are normalized from 0 (worst)

to 1 (best). Results from previous studies9 of latency and

traditional network games (first person avatar [7], [21], third

person avatar [22], [23], and omnipresent [5]) are similarly

normalized and fit with an exponential curve [6]. The same is

done for our user study data, normalizing the selection time

and mouse clicks for the fastest targets.10 In order to make

our data comparable to the previously published results, the

added base delay (100 milliseconds) is subtracted from our

user study data.

Figure 9 depicts the results, summarizing classes of tra-

ditional network games. The horizontal gray rectangle is a

visual indicator of user tolerance for delay. Gameplay quality

is generally acceptable above the gray area and unacceptable

below it. The exact latency tolerance threshold depends on the

9Providing details on these studies is not feasible given the space con-
straints, but the interested reader is encouraged to follow the references.

10Slow and medium targets were just above the fast targets but made the
graph less readable.
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game and to some extent the users own perception and sense

of immersion (hence the gray color and the rectangle shape

rather than a line).

The time to select a moving target with a mouse and

the number of mouse clicks most closely follows the first

person avatar model of perspective. This is likely because

performance in such games is most closely attuned to the

exact actions of the user (e.g., aiming a weapon) and so is

severely impacted by delay, whereas in other game models

user performance is handled by agents with some autonomy so

the effects of delay are mitigated. Note, this trend is similar to

that of cloud-based games [24], where all user input is delayed

by local, network and remote processing.

E. Quality of Experience

While user opinion of delay often correlates with per-

formance, subjective measures can ascertain the quality of

the experience (QoE) beyond just the target selection time

(or mouse clicks). For Puck Hunt, for each delay & speed

combination, users were asked to rate the responsiveness 1

(low) to 5 (high).

Figure 10 depicts a graph of the quality of experience –

here, the responsiveness – versus delay. The x-axis is the

total input delay and the y-axis is the responsiveness of the

round. There are three trend-lines, one for each target speed.

Each point is the mean rating for all users for that delay &

speed combination, shown with a 95% confidence interval.

From the graph, there is an observable downward trend in

QoE with an increase in delay, indicating users perceive the

delays. However, unlike for performance, there is no noticeable

separation of QoE with target speed suggesting users gauge

responsiveness based on delay independently of the difficulty

of the action.

V. DISCUSSION

Hoffman [12] suggests target selection time increases lin-

early with delay (see Equation 7). However, our observed

curvature and model more likely corresponds to an exponential

distribution (see Figure 4 and Equation 9). The difference

may be because Hoffmann’s model is over a broader range

of delays, from 30 to 1000 milliseconds, and he notes that
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Fig. 10: QoE versus delay, grouped by target speed.

at the higher range (700+ milliseconds), users employ a “stop

and wait” strategy in selecting the target, while a “continuous”

strategy dominates lower latencies. This may make a linear

relationship the best fit for his data overall, but an exponential

a better fit for lower latencies, such as in our study.

Jagacinski [18] effectively suggests target selection time

increases linearly with target speed (see Equation 4). On

the other hand, Hoffman [19] suggests target selection time

increases exponentially with target speed (see Equation 5).

Based on Figure 5, they may both be right. For low delays

(200 milliseconds or below), the increase in selection time

due to target speed is linear, while for higher delays (300

milliseconds and above) the increase in selection time due to

target speed is exponential. Thus, low delay systems, such as

delays solely from base delays, can model selection time with

a linear component for target speed, while high delay systems,

such as Internet games, would better model selection time with

an exponential component for target speed.

Brady [13] analyzed the subjective experience of users

selecting moving targets with a delayed mouse, finding a

strong inverse linear relationship over the range of delays

studied (from 0 to about 200 milliseconds). Our results (Fig-

ure 10) confirm Brady’s, showing an inverse linear relationship

(correlation -0.88) between the target selection time and the

delay over a somewhat broader range (from 100 to 500

milliseconds).

Our final model as presented (Equation 9) likely holds

primarily for the size of the target tested (100 pixels in

diameter) and screen resolution (1920x1080 pixels), since

target selection time is known to be affected by both target

size and target distance (see Equation 2). While the distance

from the source (the starting location of the mouse pointer)

to the target varies in our study, the distance the mouse

travels averages about 1⁄2 the maximum distance on the screen.

Combining Fitts’ index of difficulty (Equation 2) with our

results may produce a unified general model. Such modeling

should consider both the absolute target size in pixels and also

the target size relative to the screen resolution.

An additional concern of any unified model for target

selection with a mouse is the skill of the user. Figure 6 shows

high skill users are less impacted by delays from 300 to



500 milliseconds, with high skill users having only a 3-fold

increase in selection time while low skill users have a 10-

fold increase in selection time. Thus, for many practical delay

ranges, the effects of skill may dominate the effects of delay.

The results presented are relevant to all forms of input delay,

both the local system (e.g., operating system and hardware)

and the network. In particular, the results pertain to cloud

systems where all user input is sent to the cloud for rendering,

meaning mouse movements and clicks are delayed by the

local system, network and server. However, traditional network

games – where mouse movement is processed and rendered by

the local client – have only local delay for mouse movement,

but incur additional delays for mouse clicking since the latter

have network and server processing delays, too.

VI. CONCLUSION

Understanding the effects of delay can help game designers

and researchers develop and deploy solutions to mitigate the

negative impact of delay on game players. Previous game

studies measuring the effects of delay do not generalize nor

model well, and previous user input studies do not yet provide

models quantifying the effects of delay on player actions.

Our work provides a step towards understanding the effects

of delay on user input for games. We present results of a user

study with a custom game wherein players selected moving

targets with different speeds using a mouse with delayed input.

Over 30 users provided data for delays from 100 to 500

milliseconds and 3 target speeds – in total, over 5000 obser-

vations of user performance and over 1000 subjective quality

assessments for the different delay & speed combinations.

Analysis of the results shows an increase in the time

required to select a moving target even for low delays (under

200 milliseconds), and a sharp increase in selection time

for higher delays (over 300 milliseconds) and fast targets

(450 pixels per second). Subjective opinions show users are

sensitive to even modest delays. A derived analytic model

provides a good fit for the mean time to select a moving target,

with an exponential term for delay and an important interaction

term that captures the effects of target speed combined with

delay.

Hoffman [12] found a delay inflection point around 700

milliseconds above which users changed behavior from con-

tinuous movement to move-and-wait. While such delays are

typically beyond what most game players tolerate, future

work could explore this inflection point for other applications.

Since user skill significantly impacts target selection time (see

Figure 6), future work may look to first quantify skill and then

incorporate it into an analytic model. Additional models can

be derived for mouse clicks and quality of experience. Other

forms of user input for target selection (e.g., analog controller,

touch on mobile/tablet) or user input in the form of keyboard

or game controller buttons could also be explored.
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