
Evaluating the Impact of Playout Buffer Policies on
Cloud Gaming QoE

Xiaokun Xu
Computer Science

Worcester Polytechnic Institute
Worcester, USA
xxu11@wpi.edu

Mark Claypool
Computer Science

Worcester Polytechnic Institute
Worcester, USA

claypool@wpi.edu

Abstract—Cloud gaming relies upon smooth delivery of frames
and low delay for a good player Quality of Experience (QoE).
While playout buffering has long been used in traditional
streaming systems – e.g., streaming video and VoIP – to smooth
out variations in delay and available bandwidth, algorithms for
playout buffering for cloud game streams are under-researched.
In particular, QoE models for cloud-based game streams differ
from those for traditional media, suggesting algorithms that have
been widely used and proposed may need to be adjusted for
cloud gaming. This paper investigates playout buffer policies
on cloud gaming QoE by employing a trace-driven simulation
framework that allows for a head-to-head comparison of policies.
By integrating established QoE models, our study quantifies how
these technical parameters affect perceived gaming quality. Our
results reveal that the effectiveness of a buffer policy is highly
dependent on the network conditions, with adaptive strategies
showing potential benefits in environments with high jitter, while
more conservative policies may suffice under stable network
conditions.

Index Terms—cloud-game streaming, quality of experience,
playout buffer.

I. INTRODUCTION

Cloud-based game streaming (cloud gaming) renders games
on powerful remote servers and streams them to low-end
devices, offering access to a wide range of game titles without
the need for the game client to have high-end hardware or
do game installation. However, network congestion, variable
delays, and fluctuating bandwidth can cause delayed responses
and frame stuttering, degrading QoE. To counteract this, client-
side playout buffers are used to smooth out network-induced
jitter by temporarily storing frames, then delivering them
evenly-paced as long as there are frames in the buffer. This
technique introduces a trade-off: while a buffer can help absorb
network-induced frame jitter and reduce the frequency of
playback interruptions – the larger the buffer, the smoother
the playout – the buffer also adds to end-to-end latency – the
larger the buffer, the less responsive the interaction.

Previous research on playout buffers has primarily focused
on traditional media (e.g., video-on-demand streaming) and
interactive audio/video (e.g., video conferencing). Studies in
video streaming have shown that buffer-induced delay and
playback interruptions equally degrade user experience [1]–
[4], while research on interactive media has highlighted that
the effects of delay and jitter depend on the nature of user

interactions [5]–[7]. However, cloud gaming has distinct QoE
requirements – where both high responsiveness and smooth
playback are crucial – indicating a need for a focused investi-
gation into how different playout buffer policies perform under
varying network conditions.

In this paper, we explore how playout buffer policies affect
cloud gaming QoE by analyzing delay and frame jitter using
trace-driven simulation. We simulated diverse buffering sce-
narios with over 300 traces from real cloud gaming systems
– with network conditions ranging from smooth to choppy
– to compare policies head-to-head and determine optimal
settings through brute-force exploration. Using established
QoE models, we compare the trade-offs between buffering
and frame interrupts, finding that adaptive strategies excel
in high-jitter environments while conservative policies suffice
under stable conditions. These insights can help inform system
upgrades and network improvements and also guide developers
in game designs and architectures that work well in cloud-
based streaming environments for better overall QoE.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on network performance and QoE
in cloud gaming and streaming media; Section III outlines
our methodological framework and experimental setup used to
evaluate playout buffer policies; Section IV presents analysis
of the performance metrics and discuss how different buffer
policies affect QoE under various network conditions; Sec-
tion V discusses the limitations of our study and potential
avenues for future research; and Section VI summarizes our
conclusions.

II. RELATED WORK

A. Jitter and Video Streaming

Prior research shows that packet-level delay jitter degrades
QoE by disrupting video transmission and causing frame jitter.
For example, Orosz et al. [8] linked QoS metrics such as jitter,
packet loss, and reordering to Mean Opinion Score (MOS),
while Guan-Ming et al. [9] noted that wireless networks often
lack the stability for smooth streaming due to jitter. Rao et
al. [10] further identified delay jitter as a key factor in quality
degradation. However, these findings may not fully apply
to gaming, which demands higher interactivity and real-time
responsiveness.

B. Playout Buffer Policies and Video Streaming
Playout buffers in video streaming smooth packet arrival

variations and reduce playback interruptions by temporarily
storing frames. Strategies range from fixed buffers – which
trade off latency against interruption risk – to adaptive ap-
proaches that adjust buffer size in real time to minimize stutter
without excessive delay [4], [11]–[14]. These studies highlight
the delicate balance required to optimize QoE, and that static
solutions are less suited for interactive environments.

C. Playout Buffer Policies in Cloud-based Game Streaming
Traditional video streaming buffers smooth playback by

storing data, but may not suit cloud gaming where even slight
delays disrupt real-time feedback. Balancing jitter absorption
with low latency is needed for cloud gaming, as games
and other forms of interactive media have degraded QoE
under high delays. Although some studies have examined
network impairments in cloud gaming [15], [16], systematic
investigations into tailored playout buffer policies are scarce,
underscoring the need for detailed analysis of buffering strate-
gies that maintain low latency while ensuring smooth frame
delivery.

In our work, we address this gap by employing a trace-
driven playout buffer simulator which allows us to directly
compare a variety of buffering strategies under the exact same
network conditions. Our evaluation uses cloud gaming QoE
metrics to compare tradeoffs that are specific to cloud-based
game streams.

III. METHODOLOGY

To investigate the effects of playout buffer policies on
cloud game QoE, we took traces gathered from a user study:
participants used an open source cloud-game streaming system
and played several different commercial games over a range of
induced network perturbations, all while the system gathered
frame playout traces. Subsequently, these traces were fed into
our playout buffer simulator that provided key metrics – delay
and interrupts – for policy evaluation.

The overall methodology is as follows:

(1) Select games. While game genres provide a broad cat-
egorization, they are insufficient for assessing QoE, which
also depends on visual effects (spatial/temporal complexity),
camera perspective, and interactivity [17]–[20]. To address
these factors, we selected four games with diverse camera
types and spatial/temporal characteristics: Bloons Tower De-
fense 6 (BTD6) [21] (Figure 1d) is a top-down tower defense
game; Hollow Knight [22] (Figure 1c) is a 2D side-scrolling
platformer; Hades [23] (Figure 1b) is a rogue-like fighting
game with an isometric view; and Counter-Strike: Global
Offensive (CS:GO) [24] (Figure 1a) is a first-person shooter
game with a training course. In each game, participants com-
pleted a standardized mission – positioning towers in BTD6,
progressing through a tutorial in Hollow Knight, engaging
in continuous combat in Hades, and navigating the training
course in CS:GO – to ensure a consistent basis for evaluating
QoE across varied interactive environments.

(a) CS:GO (b) Hades

(c) Hollow Knight (d) Bloons TD 6

Fig. 1: Screenshots of games selected for the four user studies
(S1 to S4).

Fig. 2: Testbed for user study.

(2) Setup testbed. A laboratory setting was used to isolate
participants and their game systems from uncontrolled varia-
tion, depicted in Figure 2. We built a cloud gaming setup using
the open-source systems Moonlight [25] and Sunshine [26],
with Sunshine as the host and encoder, and Moonlight as the
decoding client. The system streamed at 60 f/s and 1080p,
with controlled network conditions to study their impact on
performance. All servers and clients ran on PCs exceeding
Moonlight and Sunshine’s recommended specifications to en-
sure that any frame jitter or delay resulted solely from network
conditions. The cloud-game client was a Windows 10 PC
(Intel i7 eight-core @ 2.0 GHz, 64 GB RAM, Gb/s Ethernet,
1920x1080 LED monitor at 60 Hz) connected via Moonlight,
while the server had identical hardware and streamed using
Sunshine. A Raspberry Pi 4 (1.5 GHz quad-core, 8 GB RAM,
Ubuntu 20.04 LTS, Linux kernel 5.4) configured with netem
acted as a network router between the client and server through
a Gb/s switch. With both systems on the same LAN, baseline
ping round-trip times were consistently around 1 ms.

(3) Induce frame jitter. Frame playout interrupts, quanti-
fied by their magnitude and frequency, were controlled using a
Raspberry Pi router configured with netem [27]. Custom dis-
tribution files manipulated packet delays to achieve the desired

TABLE I: Target frametime jitter conditions.

Parameters LAN Low High
frequency (/s) 0 0.5 3.5
magnitude (ms/s) 0 20 150
delay (ms) 1 30 100

TABLE II: LLR policy simulation results.

LLR Settings Low Jitter High Jitter
Low High IF IM Delay IF IM Delay

1 1 0.283 18.8 17.6 3.375 132.7 18.2
1 2 0.283 18.8 17.6 3.375 132.7 18.2
1 3 0.283 18.8 17.7 3.253 129.6 20.6
1 4 0.283 18.8 17.7 3.219 128.8 22.9
1 5 0.283 18.8 17.8 3.193 128.1 25.1
1 6 0.283 18.8 18.2 3.169 127.5 27.4
2 2 0.265 18.5 18.0 3.170 127.4 22.9
2 3 0.265 18.5 18.0 3.170 127.4 22.9
2 4 0.265 18.5 18.1 3.131 126.5 25.3
2 5 0.265 18.5 18.2 3.116 126.1 27.5
2 6 0.265 18.5 18.3 3.100 125.6 29.7
3 3 0.256 18.1 19.8 3.094 125.1 28.0
3 4 0.256 18.1 19.8 3.094 125.1 28.0
3 5 0.256 18.1 19.9 3.071 124.5 30.5
3 6 0.256 18.1 19.9 3.061 124.2 32.7
4 4 0.245 17.8 22.2 3.044 123.5 33.2
4 5 0.245 17.8 22.2 3.044 123.5 33.2
4 6 0.245 17.8 22.2 3.029 123.1 35.7
5 5 0.236 17.6 25.6 3.013 122.4 38.5
5 6 0.236 17.6 25.6 3.013 122.4 38.5
6 6 0.227 17.3 29.4 2.985 121.4 43.8

Fig. 3: LLR buffer policy results: fixed high water marker
(H=6), low water mark in range 1-6.

interrupt characteristics, while Presentmon [28] recorded the
time between displayed frames during gameplay.

(4) Select parameters. The study used two levels of frame
jitter – low and high – determined through pilot tests of various
interrupt frequency and magnitude combinations (see Table I).

(5) Recruit users and conduct study. The study was ap-
proved by our University’s Institute Review Board (IRB),
and volunteers were recruited via university mailing lists and
game-centric groups. Each 50-second round contributed to an
hour-long session per participant, who received $10 and were
eligible for class credit, as appropriate. Participants signed
consent forms, familiarized themselves with the setup through
practice sessions, and then played short rounds for each game
condition while the system recorded frame display timings.
The order of games and frame jitter conditions was randomly
shuffled for each participant, who completed all rounds for
one game before moving to the next. Participants could pause
between rounds as needed and were free to quit at any time.

(6) playout buffer simulation. After each gameplay ses-
sion, frame traces captured by Presentmon were converted
into input files for our playout buffer emulator, Cushion,
which simulates frame arrival using inter-frame timing data.
By comparing these simulations with subjective QoE ratings,
we isolate the effects of playout buffer policies on cloud
gaming performance. We simulated two policies: the Low
Latency Video Renderer Algorithm (LLR) [29] – adapted
from WebRTC used for Google’s Stadia system [30] and other
streaming-media players – and Queue Monitoring (QM) [31],
a videoconferencing-centric approach balancing interrupts and
delay.

For LLR, Cushion uses a watermark-based method with
three parameters: a low water mark (L) to trigger playout, a

high water mark (H) beyond which extra frames are discarded,
and a target frame rate (F). The system starts in “fill” mode
until L is reached, then switches to fixed-rate playout; if the
buffer exceeds H, it enters “drain” mode until it drops back
to L. We tested L and H values from 1 to 6.

The QM policy employs a “clawback” mechanism where
late frames build up the buffer until persistent excess triggers
aggressive discarding. Each buffer element has a threshold (in
frame times) that decreases with buffer size using a fixed decay
factor of 2. A counter for each position is incremented every
frame, and if any counter exceeds its threshold, a frame is
discarded and all counters are reset. We tested thresholds of
60, 120, 600, 900, 1800, and 3600.

(8) Analyze data. Our data analysis focuses on using the
objective performance metrics derived from the playout buffer
simulations – playback delay, interruption frequency, and
interruption magnitude – as inputs to previously-derived QoE
models.

IV. ANALYSIS

This section examines the impact of playout buffer policies
on jitter and delay (Section IV-A), followed by a comparison
of the QoE outcomes across different playout buffer strategies
and network conditions (Section IV-B).

A. Jitter and Delay
Frametime jitter, which causes playback interrupts (e.g.,

gaps larger than the frame time – such as 60 Hz with a
frametime of 16.7 ms – will have a gap for frametimes
larger than 33.3 ms), is used as an indicator of visual quality
in streaming video [4]. Interrupts can be measured by both
their frequency and magnitude. Interrupt frequency (IF) is the
number of frame gaps per second, and interruption magnitude
(IM) is the total extra delay per second.

TABLE III: QM policy simulation results.

QM Policy Low Jitter High Jitter
Settings IF IM Delay IF IM Delay

60 0.261 18.3 19.1 3.009 122.1 44.6
120 0.259 18.2 19.6 2.992 121.5 49.3
600 0.256 18.1 20.4 2.967 120.4 62.9
900 0.256 18.1 20.6 2.965 120.4 63.5

1800 0.256 18.1 20.9 2.960 120.1 68.3
3600 0.255 18.1 21.1 2.957 119.8 73.0

Fig. 4: QM policy simulation results.

1) LLR Performance Across Different Buffer Settings: Since
consistent delay does not impact video smoothness, we focus
on the LLR policy under low and high jitter. Table II shows
how varying the Low Water Mark (L) and High Water Mark
(H) affects IF, IM, and playback delay. The default LLR
configuration uses a low water mark of 1 frame and a high
water mark of 3 frames. From the table, we observe the
following key trends:

1) Increasing the Low Water Mark (L) significantly reduces
IF and IM – especially in high jitter – by ensuring
sufficient buffering before playback starts, although this
comes at the cost of increased delay.

2) Increasing the High Water Mark (H) further reduces IF
and IM, but its impact is less pronounced compared to
increasing L; the best performance in terms of interrupts
only is achieved when both L and H are raised.

3) Both L and H, when increased, lead to higher playback
delay, highlighting a trade-off between smoothness and
interactivity.

Figure 3 shows the same data as Table II in graph form,
focusing on H = 6 values (since L has a greater impact than
H) with y-axes scaled separately for low and high jitter. Under
low jitter, IF and IM are naturally low, so changes in L yields
only minor improvements without much extra delay. In high
jitter conditions, increasing L notably reduces IF and IM by
absorbing frame delivery fluctuations; however, larger buffer
sizes also lead to rapidly increasing playback delay, making
balancing between delay and smoothness more critical in high-
jitter environments.

2) Queue Monitoring Performance Across Different Buffer
Settings: Table III shows the Queue Monitoring (QM) buffer
policy evaluation. QM dynamically adjusts buffering based on
two parameters: a threshold (the first number) that triggers
frame discarding to prevent excessive queuing, and a decay
factor (fixed at 2) that controls how aggressively the buffer is
reduced. The table details the effects of different QM settings

on IF, IM, and playback delay under both low and high
jitter, with the default configuration indicated by the bold row
(setting 600).

From the table, we observe the following key trends:
1) Raising the threshold allows more frames to accumulate,

reducing IF and IM by increasing the buffer’s tolerance
to fluctuations, but it also increases playback delay. This
effect is most pronounced under high jitter, where low
thresholds lead to frequent interruptions. Although IF
and IM decrease with higher thresholds, gains diminish
beyond 60-120, indicating that larger buffers yield min-
imal additional interruption reduction while incurring
greater delay.

2) Higher thresholds lead to longer playback delays as
frames remain queued longer, especially under high
jitter. For example, increasing the threshold from 60 to
3600 raises the delay from 44.6 ms to 73.0 ms, indi-
cating that while higher thresholds reduce interruptions,
they also increase latency, degrading user experience in
latency-sensitive gaming.

Figure 4 shows the same data as Table III with y-axes
scaled separately for low and high jitter. Under low jitter,
threshold changes have little impact on IF and IM, and
playback delay increases gradually. In contrast, under high
jitter, higher thresholds markedly reduce interruptions but
cause rapid increases in delay, illustrating a strong trade-off
between smoothness and latency.

3) Comparison of LLR and QM Policies: The simulation
results for both LLR and Queue Monitoring (QM) policies
reveal key differences in how each buffering strategy affects
IF, IM and playback delay under low and high jitter conditions.

1) In low jitter conditions, LLR slightly outperforms QM
by achieving IF = 0.23 and IM = 17.3 ms versus QM’s
IF = 0.26 and IM = 18.1 ms, indicating smoother playout
with fewer interruptions. Conversely, under high jitter,
QM achieves marginally better performance with IF =

Fig. 5: QoE comparison of interruption magnitude (IM) and delay (ms) across different buffering strategies. (a) Without a
buffer, (b) buffer policy with default settings, (c) buffer policy with optimal settings. For IM low and high, delay low and high,
refer to Table I

2.96 and IM = 119.8 ms compared to LLR’s IF = 2.99
and IM = 121.4 ms, suggesting that QM handles severe
jitter slightly more effectively.

2) One key difference between the policies is playback
delay. Under low jitter, QM achieves a significantly
lower delay (21.1 ms) compared to LLR (29.4 ms),
making it more efficient for latency-sensitive cloud gam-
ing. However, in high jitter conditions, LLR maintains a
lower delay (43.8 ms) than QM (73.0 ms). This suggests
that while QM can slightly reduce interruptions in high
jitter, its aggressive buffer reduction causes frames to be
retained longer, resulting in higher latency.

3) In low jitter conditions: LLR is better at reducing
interruptions, while QM significantly reduces delay. If
the primary concern is minimizing interruptions, LLR is
the better choice. However, if low latency is the priority,
QM performs much better.
In high jitter conditions: QM still reduces interruptions
slightly better than LLR, but at the cost of excessive
delay. If maintaining low delay is more important,
LLR is the superior option because it keeps playback
delay significantly lower while still achieving reasonable
smoothness.

B. QoE-based Results

Previous analysis compares interrupts and delay but does not
quantify their impact on QoE. Xu and Claypool [32] found that
interrupt frequency (IF) has little correlation with QoE in cloud
gaming, so our evaluation focuses on interrupt magnitude (IM)
and delay. We adopt their linear model (QIM) for IM:

QIM = −0.004 ∗ IM + 4 (1)

where QIM represents the QoE value (ranging from 1 to 5)
based on IM (in ms/s).

For the delay model (Qd), Liu and Claypool [33] proposed
a similar linear model based on a controlled user study where
participants experienced different levels of delay while playing
cloud-based games. The model is given by:

Qd = −0.004 ∗ delay + 4 (2)

where Qd represents the QoE value (ranging from 1 to 5)
based on delay (in milliseconds).

To compute the final QoE (Qfinal) for each buffering
configuration, we take the minimum value between QIM and
Qd:

Qfinal = min(QIM , Qd) (3)

This approach reflects the worst-case impact principle,
meaning that the most limiting factor between interrupt mag-
nitude and delay determines the user’s perceived QoE. If
interrupt magnitude is high but delay is low, QoE will be
constrained by IM, and vice versa.

Figure 5 uses heatmaps to depict the results. The heatmap
illustrates the impact of different buffering policies (no buffer,
default, and optimal settings) on QoE under varying jitter. The
x-axis represents interruption magnitude (IM), and the y-axis
shows playback delay (base delay plus buffering delay – 30 ms
for low jitter and 100 ms for high jitter). Each square indicates

a specific jitter-delay combination and its corresponding QoE,
with a blue-red gradient where blue signifies higher QoE and
red lower QoE. Each large section corresponds to a different
buffering policy:

1) Without Buffer: No playout buffer mechanism is applied.
2) Buffer policy with default settings: Using LLR (1 3) or

QM (600), representing standard buffer settings.
3) Buffer policy with optimal settings: Using LLR (1 1,

6 6) or QM ((60), (3600)), which represents the best
settings for each policy based on simulation results over
all settings.

In low jitter, both buffering policies reduce QoE compared
to no buffering – dropping from 3.88 (low delay) and 3.53
(high delay) – indicating that in stable networks, added latency
harms QoE more than jitter reduction helps. In high jitter,
LLR consistently improves QoE by mitigating interruptions
without excessive latency, whereas QM’s aggressive buffering
introduces too much delay, resulting in a QoE drop.

When comparing default and optimal settings, buffering
effectiveness differs between QM and LLR. QM generally
introduces excessive delay, making a minimal buffer (setting
60) optimal for reducing delay while mitigating jitter. In
contrast, LLR’s default setting offers a balanced trade-off
between reducing interruptions and limiting delay, making
it more reliable in unpredictable network conditions, though
further fine-tuning could improve performance under specific
jitter and delay scenarios.

In summary, the LLR policy generally enhances QoE for
cloud gaming in jittery conditions by balancing smoothness
and responsiveness—critical for interactive gameplay—while
effectively reducing interruptions with minimal added delay.
In contrast, the QM policy, designed for video streaming
where uninterrupted playback outweighs low latency, tends to
introduce excessive delay in cloud gaming, especially under
high jitter, thereby lowering QoE. This difference stems from
their intended applications; LLR was optimized for Google’s
cloud gaming platform to manage network variations and
latency constraints, whereas QM prioritizes buffering stability.
As a result, LLR is the more effective choice for maintaining
good QoE for cloud gaming in jittery network environments.

V. LIMITATIONS AND FUTURE WORK

One limitation of our study is the simplified QoE model
used in analysis, which defines final QoE as the minimum
of IM and delay. While this captures the dominant factor, it
overlooks possible confounding effects when both jitter and
delay are high, or mitigating effects when one is high and the
other low. Future work should develop a more comprehensive
model with weighted, nonlinear interactions between delay and
jitter that considers subjective user tolerance and input latency.

Another limitation is that Cushion currently supports only
two policies – LLR and QM – even though other strategies,
such as JitBright [34], offer different trade-offs between delay
and smoothness. Future work could expand Cushion to include
additional buffer policies, enabling a broader evaluation of

strategies and more comprehensive guidance for optimizing
cloud gaming QoE.

Cushion currently lacks key frame support, which is crucial
for handling frame drops and resynchronization in real-world
scenarios. Without key frames, simulated buffering may not
accurately reflect actual behavior, potentially affecting result
accuracy. Future work should add key frame handling to
improve simulation realism and better represent video degra-
dation in cloud gaming.

VI. CONCLUSIONS

Cloud-based game streaming presents unique challenges
compared to traditional gaming due to network-induced frame
jitter and delay. While playout buffer policies are commonly
used in video streaming to smooth playback, their role in cloud
gaming is less understood. This study examines how different
policies affect QoE under various network conditions by sim-
ulating LLR and Queue Monitoring (QM) buffering policies
with the Cushion framework, analyzing their effectiveness in
mitigating jitter while minimizing delay.

Our results reveal that buffering strategies significantly
affect QoE, with their impact depending on the network
conditions. In low jitter scenarios, both LLR and QM tend
to decrease QoE due to the additional delay introduced
by buffering. However, in high jitter conditions, buffering
can improve QoE, especially when the added delay remains
minimal. The LLR buffer policy, designed specifically for
cloud gaming, strikes a better balance between smoothness
and interactivity compared to QM, originally developed for
video streaming, which introduces excessive buffering delay,
negatively affecting gameplay in high-delay conditions.

When comparing default and optimal buffer settings, QM’s
threshold of 60 performs best in most scenarios as it introduces
the least delay, while LLR’s default setting of 1 3 provides
a more balanced trade-off, making it a reliable choice across
different network conditions. However, for extreme jitter con-
ditions, optimized LLR settings outperform its default con-
figuration, demonstrating the potential for adaptive buffering
strategies.

Overall, playout buffer policies play a crucial role in
cloud gaming QoE, influencing how well the system balances
smooth frame delivery and interactive responsiveness. Our
findings suggest that cloud gaming platforms should carefully
tune buffering mechanisms based on network conditions and
even based on game genre to achieve better QoE. Future
research could further explore adaptive buffering strategies
that dynamically adjust settings based on real-time network
variations and game type, leading to a better QoE for cloud
gaming under a wide-range of network conditions.

REFERENCES

[1] L. Zhang, L. Zheng, and K. Soo Ngee, “Effect of Delay and
Delay Jitter on Voice/Video over IP,” Computer Communications,
vol. 25, no. 9, pp. 863–873, 2002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0140366401004182

[2] A. Tatematsu, Y. Ishibashi, N. Fukushima, and S. Sugawara, “QoE As-
sessment in Haptic Media, Sound and Video Transmission: Influences of
Network Latency,” in Proceedings of the IEEE International Workshop
Technical Committee on Communications Quality and Reliability (CQR),
Vancouver, British Columbia, Canada, 2010, pp. 1–6.

[3] M. Claypool and J. Tanner, “The effects of jitter on the peceptual
quality of video,” in Proceedings of the Seventh ACM International
Conference on Multimedia (Part 2), Orlando, FL, USA, 1999, p.
115–118. [Online]. Available: https://doi.org/10.1145/319878.319909

[4] J. Allard, A. Roskuski, and M. Claypool, “Measuring and Modeling
the Impact of Buffering and Interrupts on Streaming Video Quality of
Experience,” in Proceedings of the 18th International Conference on
Advances in Mobile Computing & Multimedia (MoMM), Chiang Mai,
Thailand, Dec. 2020.

[5] H. Ahmadi, S. Khoshnood, M. R. Hashemi, and S. Shirmohammadi,
“Efficient Bitrate Reduction using a Game Attention Model in Cloud
Gaming,” in Proceedings of the IEEE International Symposium on
Haptic Audio Visual Environments and Games (HAVE), Ottowa, ON,
Canada, 2013, pp. 103–108.

[6] M. Manzano, J. A. Hernández, M. Urueña, and E. Calle, “An Empirical
Study of Cloud Gaming,” in Proceeding of the 11th Annual Workshop
on Network and Systems Support for Games (NetGames), 2012, pp. 1–2.

[7] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to Win?
Network Performance Analysis of the OnLive Thin Client Game System
,” in Proceedings of the 11th ACM Network and System Support for
Games (NetGames), Venice, Italy, Nov. 2012.

[8] P. Orosz, T. Skopkó, Z. Nagy, P. Varga, and L. Gyimóthi, “A Case Study
on Correlating Video QoS and QoE,” in IEEE Network Operations and
Management Symposium (NOMS), Krakow, Poland, 2014, pp. 1–5.

[9] S. Guan-Ming, S. Xiao, B. Yan, W. Mea, A. V. Vasilakos, and H. Wang,
“QoE in Video Streaming over Wireless Networks: Perspectives and
Research Challenges,” Wireless Networking, 2015.

[10] N. Rao, A. Maleki, F. Chen, W. Chen, C. Zhang, N. Kaur, and
A. Haque, “Analysis of the Effect of QoS on Video Conferencing QoE,”
in 15th International Wireless Communications & Mobile Computing
Conference (IWCMC), 2019, pp. 1267–1272.

[11] K. Fujimoto, S. Ata, and M. Murata, “Adaptive Playout Buffer Algorithm
for Enhancing Perceived Quality of Streaming Applications,” Telecom-
munication Systems, vol. 25, no. 3–4, p. 259–271, Mar. 2004.

[12] M. Kalman, E. Steinbach, and B. Girod, “Adaptive Media Playout
for Low-delay Video Streaming over Error-prone Channels,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 14,
no. 6, pp. 841–851, 2004.

[13] M. Yuang, S. Liang, Y. Chen, and C. Shen, “Dynamic video playout
smoothing method for multimedia applications,” in Proceedings of
ICC/SUPERCOMM ’96 - International Conference on Communications,
vol. 3, 1996, pp. 1365–1369 vol.3.

[14] Y. Cinar, P. Pocta, D. Chambers, and H. Melvin, “Improved Jitter
Buffer Management for WebRTC,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 17, no. 1, Apr. 2021. [Online]. Available:
https://doi.org/10.1145/3410449

[15] H. S. Rossi, N. Ögren, K. Mitra, I. Cotanis, C. Åhlund, and P. Johansson,
“Subjective Quality of Experience Assessment in Mobile Cloud Games,”
in IEEE Global Communications Conference (GLOBECOM), Rio de
Janeiro, Brazil, Dec. 2022, pp. 1918–1923.

[16] M. Suznjevic, I. Slivar, and L. Skorin-Kapov, “Analysis and QoE Eval-
uation of Cloud Gaming Service Adaptation under Different Network
Conditions: The Case of NVIDIA GeForce NOW,” in Eighth Inter-
national Conference on Quality of Multimedia Experience (QoMEX),
Lisbon, Portugal, 2016, pp. 1–6.

[17] S. Schmidt, S. Zadtootaghaj, and S. Moller, “Towards the Delay
Sensitivity of Games: There is More than Genres,” in Proceedings
of the International Conference on Quality of Multimedia Experience
(QoMEX), Erfurt, Germany, May 2017.

[18] M. Claypool, “Motion and Scene Complexity for Streaming Video
Games,” in Proceedings of the 4th ACM International Conference on
the Foundations of Digital Games (FDG), Florida, USA, Apr. 2009.

[19] M. Claypool and K. Claypool, “Perspectives, Frame Rates and Resolu-
tions: It’s all in the Game,” in Proceedings of the 4th ACM International
Conference on the Foundations of Digital Games (FDG), Florida, USA,
Apr. 2009.

[20] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, C. Griwodz, and S. Möller,
“Delay Sensitivity Classification of Cloud Gaming Content,” in Pro-
ceedings of the International Workshop on Immersive Mixed and Virtual
Environment Systems (MMVE), Istanbul, Turkey, 2020.

[21] Wikipedia contributors, “Bloons TD 6,” 2018, [Accessed 12-Sep-2023].
[Online]. Available: https://en.wikipedia.org/wiki/Bloons TD 6

[22] ——, “Hollow Knight,” 2017, [Accessed 12-Sep-2023]. [Online].
Available: https://en.wikipedia.org/wiki/Hollow Knight

[23] ——, “Hades (video game),” 2020, [Accessed 12-Sep-2023]. [Online].
Available: https://en.wikipedia.org/wiki/Hades (video game)

[24] ——, “Counter-strike: Global Offensive (CS:GO),” [Accessed 28-Nov-
2023]. [Online]. Available: https://en.wikipedia.org/wiki/Counter-Strike:
Global Offensive

[25] C. Gutman, “Moonlight PC v4.3.1,” Nov. 2022, online:
https://github.com/moonlight-stream.

[26] LizardByte, “Sunshine,” Nov. 2022, online: https://github.com/
LizardByte/Sunshine.

[27] Wikipedia contributors, “Network emulation,” 2022, [Accessed 20-
Oct-2022]. [Online]. Available: https://en.wikipedia.org/wiki/Network
emulation

[28] GameTechDev, “PresentMon V1.8.0,” May 2022, online:
https://github.com/GameTechDev/PresentMon.

[29] T. C. Authors, “low latency video renderer algorithm,” Jan. 2020, on-
line: https://tinyurl.com/mpe5sucp.

[30] Google, “Google Stadia Post-game Survey,” 2020, (Accessed Oct 15,
2021). [Online]. Available: https://stadia.google.com/

[31] D. L. Stone and K. Jeffay, “An empirical study of delay jitter
management policies,” Multimedia Syst., vol. 2, no. 6, p. 267–279, Jan.
1995. [Online]. Available: https://doi.org/10.1007/BF01225244

[32] X. Xu and M. Claypool, “User Study-based Models of Game
Player Quality of Experience with Frame Display Time Variation,” in
Proceedings of the 15th ACM Multimedia Systems Conference, Bari,
Italy, 2024, p. 210–220. [Online]. Available: https://doi.org/10.1145/
3625468.3647625

[33] S. Liu and M. Claypool, “The Impact of Latency on Navigation in
a First-Person Perspective Game,” in Proceedings of the ACM CHI
Conference on Human Factors in Computing Systems, New Orleans,
LA, USA, 2022. [Online]. Available: https://doi.org/10.1145/3491102.
3517660

[34] Y. Zhao, Q. Wu, G. Lv, F. Yang, J. Zhang, F. Peng, Y. Liu, Z. Li,
Y. Chen, H. Guo, and G. Xie, “JitBright: towards Low-Latency Mobile
Cloud Rendering through Jitter Buffer Optimization,” in Proceedings
of the 34th Edition of the ACM Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), Bari, Italy,
2024, p. 36–42.

