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ABSTRACT

Streaming video clients use playout buffers to smooth out varia-

tions in network bitrates, especially important for mobile devices.

The playout buffer sizes trade-off: the time delay before a video

starts playing with interrupts when a video stops playing in the

middle. The best buffer size a client should choose for the video and

network conditions depends upon the relative impacts of buffering

delays and interrupts on the user quality of experience (QoE). We

design user study experiments that isolate buffering delays and in-

terrupts, allowing for direct, quantitative comparisons of the im-

pact on QoE for buffering delays versus interrupts. In our user

study, over thirty users watched and rated 17 videos with a broad

range of content, encoded with varying amounts of buffering de-

lays and interrupts. Analysis of the data reveals interrupts more

costly to QoE than the corresponding amount of buffering by a

factor of about 2 to 1. The data is used to construct an analytic

model of QoE which incorporates the impacts of buffering delays

and interrupts, a model that can be a tool for assessing and improv-

ing how streaming video clients pick buffer sizes to maximize user

QoE.

CCS CONCEPTS

•Human-centered computing→ Empirical studies in HCI ; • In-

formation systems→Multimedia streaming;
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1 INTRODUCTION

The increasing power of today’s computers coupled with the rise

in network capacities has fueled the growth in streaming video.

Improvements to wireless networking and mobile phones have es-

pecially increased video consumption on mobile devices. Over 60

percent of U.S. survey respondents watched video online via a mo-

bile device in 2018, more than any other platform [6]. World-wide,

over 2.7 billion people are predicted to watch video on their mo-

bile phones by 2023, up from from 2.2 billion in 2019 [21]. Cisco’s

annual Internet report predicts that by 2022, video will make up

82% of all Internet traffic and 79% of all mobile traffic [4].

Despite network improvements, video quality can still suffer

during periods of congestion when networks do not have enough

capacity tomeet current demands. Congestion for streaming video

means the rate the video is received by a client player is lower than

the rate the video is played out.When this happens, the videomust

inevitably stop playing until enough video has arrived to resume

playout. Even when the overall average receive rate is greater than

the average playout rate, fluctuations in the rate over the life of the

video playout can cause periods where the instantaneous receive

rate is insufficient to meet playout demands.

Playout buffering, depicted in Figure 1, is a technique that can re-

duce stops in video playout due to fluctuations in the incoming net-

work bitrates. With playout buffering, the client buffers received

video for some time before playing it out at the normal playout

rate. Over the life of the video playout, the actual amount buffered

varies, increasing when the incoming rate (A) is greater than the

video playout rate (B) and decreasing when the incoming rate is

less than the video playout rate. However, as long as the buffer

does not drain completely, the video playout can proceed smoothly,

without interruption. This suggests the client should use a large

buffer to prevent the buffer from draining completely and inter-

rupting playout. However, the larger the buffer, the longer the user

must wait for playout to begin. There is a fundamental trade-off be-

tween the degradation to the viewer’s quality of experience (QoE)

caused by the delay when waiting for a video to buffer and the

degradation to the viewer’s quality of experience caused by play-

out interrupts. Thus, the size of the buffer is an important param-

eter the video player chooses in order to balance the delay from

buffering and the interrupts when there is no remaining buffer.

Commercial systems have quantified the amount of buffering

and/or interrupts observed (e.g., 20% of streaming videos have at

least one interrupt and 20% have long buffer times [7]), or have

surveyed users’ frustration with buffering [3], but do not measure,

much less report, how each affects user QoE. Other work has an-

alyzed methods to compensate for interrupts by buffering, quanti-

fying the exact trade-off between buffers and interrupts [15], but

https://doi.org/10.1145/3428690.3429173
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Figure 1: Playout buffer as part of a streaming video system.

has not quantitatively compared the impact to QoE for each. Addi-

tional research has attempted to infer video QoE by how long users

watched a streaming video [19], but without directly measuring

or knowing the relationship between buffer times and interrupts.

Another approach [2] examined various video metrics in an effort

to find components relevant to QoE, but only inferred quality by

viewing time. Research that did measure and model the impact of

interrupts and buffering delay on QoE [10], but fails to quantify

interrupts.

Unfortunately, choosing the best buffer size can only be done if

the comparative impacts on QoE for buffering delay and interrupts

are quantified. In other words, the amount that delay impacts view-

ing QoE compared to the amount that interrupts impact viewing

QoE must be clearly established. Streaming approaches that use

buffer occupancy [1, 11, 12] or throughput [18] in order to pick

streaming rates, and models that assess the probability of inter-

rupts for different startup delays [20] would benefit from the ex-

plicit “cost” to the viewing experience from interrupts versus delay.

In the absence of this information, current video players must re-

sort to heuristics to choose buffer sizes, hoping these result in the

best viewing experiences. Instead, if the impacts of buffer delays

and number of interrupts on QoE were quantified, then video play-

ers could make informed decisions about the sizes of their buffers,

effectively finding the balance between buffering delay and inter-

rupts that maximizes viewer QoEs.

For an illustration of a possible representation of QoE for buffer-

ing and interrupts, consider Figure 2. The x-axis represents the user

annoyance from interrupts and the y-axis the user annoyance from

buffering. The best quality is at the origin, with no buffering and

no interrupts. However, as noted above, during congestion, some

amount of buffering is necessary or there will be interrupts. The

axes are normalized so that a unit degradation in QoE due to inter-

rupts is the same as a unit degradation in quality due to buffering.

For video streams with both buffering and interrupts, QoE could

be computed by the Euclidean distance from the origin, providing

regions of equivalent quality around this origin. A video player

could then choose the best buffer size so as to maximize quality

based on these dimensions.

Our approach is to take a step towards ascertaining the best

video buffer sizes by measuring and then modeling the impacts on

QoE for buffering delay versus playout interrupts through a user

study designed to provide a direct comparison between buffering

delays and interrupts. A set of short videos with a range of content

were selected and re-encoded with different amounts of buffering

delays and interrupts. The videos were embedded into an interface

Figure 2: Video quality of experience for buffering and in-

terrupts. The best quality is at the origin. Lines represent

regions of equivalent quality.

that allowed users to watch and evaluate the videos in a controlled

laboratory setting. Volunteers were solicited to participate in the

study, each watching and rating 17 videos. Over 30 users partici-

pated, providing about 600 quantifiable QoE data points on buffer-

ing delays and interrupts.

Analysis of the results shows that based on total time, playout

interrupts have a larger degradation to QoE – since our method

allows for a quantifiable comparison, about twice as large – as

buffering delay. As a guideline, buffer times of about 30 seconds de-

grade QoE the same as do 2 one-second interrupts in playout. QoE

degradations for both buffering delays and interrupts are well mod-

eled by logarithmic functions confirming earlier work [9]. View-

ing these models together enables analysis of equivalent regions of

quality. Moreover, the models can be combined to provide an over-

all model for QoE which can be used by streaming video clients to

determine the best buffer sizes given observed network conditions.

The rest of this paper is organized as follows: Section 2 summa-

rizes research related to this paper; Section 3 describes our user

study to measure the impact of buffering delay and interrupts; Sec-

tion 4 analyzes the resulting data and derives our QoE models; and

Section 5 summarizes our conclusions and presents possible future

work.

2 RELATED WORK

Egger et al. [9] discuss the psycho-physics basis for a model of

quality of experience and human time perception (e.g., delay when

buffering a video during initial playout). The authors describe a set

of studies that lay out the basis for a logarithmic relationship for

waiting time and user satisfaction ratings. This relationship forms

the basis of a “WQL” model, which assumes the impact of waiting

time (W) on the Quality of Experience (Q) for video is logarithmic

(L). We use this WQL relationship in modeling our QoE experi-

ences.

Modlovan and Hoßfeld [17] study the impact of network bitrate

variance (and, hence, video variance) on the QoE of video. The au-

thors use a previously established QoE model to map network pa-

rameters to video quality, modeling QoE as an exponential with

the number of interrupts and buffering length. However, their ex-

plorations do not consider the initial buffer delay, but only consider

delays that occur once playout has started (i.e., interrupts). Work
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such as theirs could benefit from a model of QoE that includes ini-

tial buffer delays, too.

Mok et al. [16] investigate the relationship among network qual-

ity of service (QoS) and video quality of experience (QoE). Their

user study results show the frequency of rebuffering events is the

main factor in QoE variation. They produce an analytic model for

QoE with interrupts that is coarsely parameterized by 3 levels. Our

work is based on a 3x larger user study and quantifies the relation-

ship between buffering and interrupts more precisely. Our study

confirms the authors’ results that interrupts degrade QoE more

than do the initial buffer delays.

Dobrian et al. [8] analyze a real-world dataset obtained from

client-side measurements streaming from popular video content

providers. They quantify user engagement, finding that the per-

centage of time spent buffering (effectively, they sum the total time

spent during interrupts) has the largest impact on the user engage-

ment. Our work is complementary in that we also analyze the im-

pact of buffer time relative to interrupts, thus confirming these re-

sults, but we also develop models that allow buffering and inter-

rupts to be directly compared.

Li et al. [14] and Kim et al. [13] investigate video playout buffer

requirements for a desired video quality given network and video

bitrate characteristics. They develop and experimentally validate

a video streaming model and derive an analytic expression of the

minimum playout buffer required. Our work is complementary to

such approaches in that a more accurate QoE model based on ini-

tial buffer delays and number of interrupts can be used by lower-

level analyticmodels to determine appropriate system-level buffers.

Research by Hoßfeld et al. [10] is most closely related to ours,

measuring the impact onQoE from delays and interrupts through a

user study. In fact, as a bonus, the authors produce a model of QoE

for initial delay that is directly comparable to our model. Our work

reproduces aspects of Hoßfeld et al.’s for confirmation, and extends

their work by computing effect sizes, directly comparing buffering

and interrupts on QoE, and modeling the impact of the number of

interrupts instead of just the total length of the interrupts.

3 METHODOLOGY

Our method to measure degradation to streaming video quality of

experience (QoE) for number of interrupts versus buffering delay

is as follows: 1) select and re-encode videos (Section 3.1); 2) develop

an interface for users to watch and evaluate videos (Section 3.2); 3)

install videos in a dedicated user laboratory (Section 3.3); 4) solicit

users to watch and rate videos (Section 3.4); and 5) analyze the

results (Section 4).

3.1 Videos

Videoswere selected from the Internet, primarily YouTube.A broad

range of content was chosen, from online comedy (e.g., the Daily

Show1) to music videos (e.g., Bruno Mars2), with the intent to have

videos with general appeal so as not to let specific content unduly

influence opinions on QoE. All the content was live action (as op-

posed to animation). In all, 17 videos were selected, one for each

1https://en.wikipedia.org/wiki/The_Daily_Show
2https://en.wikipedia.org/wiki/Bruno_Mars

Figure 3: User study interface.

of the experimental conditions (see below). The full list of videos

with their descriptions can be found on our Web site.3

All videos had an original source of 1280x720 pixels at 30 frames

per second, encoded in MPEG-4. From their original source, the

videos were clipped to 30 seconds long, where each clip contained

a single scene with no transitions. Each video was then re-encoded

with artificial buffering delay and interrupts using Microsoft Win-

dows Movie Maker. The buffering and interrupts were depicted in

the videos as the YouTube buffering animation on a black back-

ground.

Each video was re-encoded in eight ways – with four different

buffer delays and with four different numbers of interrupts. This

preparation supported a between-subjects study, where different

users watch the same content, but enabled evaluation of video

degradations in multiple ways.

Buffer delays were 2, 4, 8 and 16 seconds. Interrupts were each

one second, uniformly placed in the video for 2, 4, 8, and 16 inter-

rupts.

The pre-encoded videoswere stored locally during the user study

in order to avoid any additional artifacts (e.g., buffering delays

and/or interrupts) from streaming that were not controlled.

3.2 Interface

A graphical user interface was created to allow users to watch and

rate the locally-stored videos. Figure 3 shows a screenshot of the

user study interface. The top line shows what number video the

user is watching and how many remain until the study is complete

as a progress indicator. The main graphic shows the video as it

plays. The user presses the play button and watches the video until

completion. After the video playout has stopped, the user rates

their annoyance using a slider on a 5 point scale and provides an

opinion on the content, also with a slider on a 5 point scale.

3https://web.cs.wpi.edu/~claypool/papers/buff-int/

https://en.wikipedia.org/wiki/The_Daily_Show
https://en.wikipedia.org/wiki/Bruno_Mars
https://web.cs.wpi.edu/~claypool/papers/buff-int/
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Figure 4: Lab for user study.

3.3 Lab

Our user study was conducted in a computer lab dedicated to the

study, lit with bright, fluorescent lighting, the layout shown in Fig-

ure 4. The researcher would stage participants for consent infor-

mation before leading participants to a computer workstation. The

computers were Dell PCs with Intel i7-3770 processors and 12 GB

of RAM, running Microsoft Windows 7. The monitors were 24"

Dell U2412M LCDs with a native resolution of 1920x1200 pixels

and a refresh rate of 59p Hz.

3.4 Procedure

Participants were solicited through advertising via University email

lists and the University Social Science research participant pool.4

Incentives included a raffle for a $25 gift card for participating.

For each user, the study proceeded as follows:

(1) The user heard a scripted brief about the purpose of the

study and signed an Institute Review Board (IRB) consent

form.

(2) The user sat at a lab computer, was told to make themself

comfortable by adjusting chair height andmonitor angle/tilt

and to put on headphones and adjust the volume.5

(3) The user filled out a demographic information, (e.g., gender,

age, major, and experience with streaming media), coded us-

ing the Qualtrics survey tool.6

(4) The user watched a video with no buffer delay and no inter-

rupts, being told that this video had the best conditions to

use as a reference.

(5) The user watched videos with only buffering delay or play-

out interrupts. After each video, the user rated QoE (annoy-

ance) and content.

The total time to complete the user study for one user, including

filling out the initial forms and then watching and rating all 17

videos, was about 15 minutes.

4https://wpi.sona-systems.com/
5Headphones were provided for use, but participants were also welcome to use their
own.
6https://www.qualtrics.com/

Figure 5: Content ratings. Horizontal bars are mean ratings

across all users, shown with standard error bars.

4 ANALYSIS

This section presents the demographics of the users that partic-

ipated in the study (Section 4.1), graphical analysis of the results

(Section 4.2), and regression models and comparison of qualitywith

buffer delays and interrupts (Section 4.3).

4.1 Demographics

Thirty-seven users participated in the study. Twenty-two identi-

fied as male and 15 as female, about the same gender breakdown

as our University as a whole. Most (about 35%) were students ma-

joring in Computer Science or Game Development, with the next

most popular majors other science and/or engineering disciplines.

Ages ranged from 17-22 years with a mean and median of 20. The

mean self-rating for how often users watched streaming video, 1

(rarely) to 5 (often), was 4.7, with a standard deviation of 0.9.

4.2 Results

Figure 5 shows the distribution of the content ratings, ordered high

to low, each horizontal bar the mean rating across all users and

shown with a standard error bar of spread. Content ratings for the

5 point scale averaged a low of 2.25 for Roller Hockey to a high

of 4.1 for John Oliver. Most videos averaged above a 3, indicating

they were more liked than disliked. Subsequent analysis showed

no correlation between content and QoE for any levels of buffer de-

lay or interrupts, so we do not consider content differences further

in this paper. Similarly, subsequent analysis showed no correlation

between levels of temporal motion or spatial scene complexity [5]

in the video content and buffer delay or interrupts, so we do not

consider these elements further.

Figure 6 depicts cumulative distribution functions (CDFs) of the

annoyance levels for different amounts of buffer delay. The x-axis

is the annoyance level and the y-axis is the cumulative distribu-

tion. There are four trend lines, one for each buffer delay in the

user study: 2, 4, 8 and 16 seconds. There is a separation of trend

lines, where the higher the buffer size the lower and to the right

the line (i.e., more annoyed). An ANOVA test shows there was a

significant effect of buffer delay on annoyance at the 0.05 signifi-

cance level [� (1, 286) = 10.91, ? = 0.001]. However, the fact that

the trend lines cover the same range horizontally indicates that a

https://wpi.sona-systems.com/
https://www.qualtrics.com/
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Figure 6: Cumulative distribution of annoyance for buffer

delay.

lower buffer delay is not always perceived as less annoying than a

higher buffer delay for all videos for all users.

We compare the mean annoyance values for buffer delay – 2, 4,

8, and 16 seconds – for each pair by doing independent, 2-tailed t

tests (U = 0.05) with a Bonferroni correction, as well as compute

the effect sizes. The Cohen’s d effect size quantifies the differences

in means in relation to the standard deviation, providing a quan-

titative measure of the magnitude of the difference in annoyance

for different buffer delays. Generally small effect sizes are anything

under 0.2, medium is 0.2 to 0.5, large 0.5 to 0.8, and very large is

above 0.8. The t test and effect size results are shown in Table 1.

From the table, the difference between 2 seconds and 16 seconds

of buffer delay is significant with a large effect size, and the effect

sizes for all other pairs except of 8 and 16 seconds are medium.

Table 1: Buffer delay annoyance t tests and effect sizes.

Buffers t(72) p Effect Size

2 4 1.56 0.120 0.36

2 8 2.18 0.033 0.51

2 16 2.74 0.007 0.64

4 8 0.98 0.332 0.14

4 16 1.02 0.308 0.24

8 16 0.37 0.780 0.09

Figure 7 depicts a CDF of the annoyance levels for different num-

bers of interrupts, with the same axes as for Figure 6. Here, the

four trend lines are for the number of interrupts in the user study:

2, 4, 8 and 16. There is a clear separation of trend lines, where the

more interrupts the lower and to the right the line (i.e., more an-

noyed). An ANOVA test shows there was a significant effect of

number of interrupts on annoyance at the 0.05 significance level

[� (1, 301) = 99.80, ? < 0.0001]. As for buffer delays, there is hor-

izontal overlap in the trend lines, indicating that fewer interrupts

is not always perceived as less annoying than more interrupts for

all videos for all users.
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Figure 7: Cumulative distribution of annoyance for number

of interrupts.

Similar to Table 1, we compare interrupts via t tests and com-

pute effects sizes, shown in Table 2, From the table, the differences

between all pairs are significant, except for 2 and 4 interrupts (with

medium effect size), and all other effect sizes are large. Generally,

the effect sizes for interrupts are larger than those for buffer delay.

Table 2: Interrupt annoyance t tests and effect sizes.

Interrupts t(72) p Effect Size

2 4 1.64 0.1030 0.38

2 8 3.99 0.0002 0.88

2 16 7.38 0.0001 1.67

4 8 2.31 0.0184 0.53

4 16 5.06 0.0001 1.15

8 16 2.89 0.0065 0.64

Comparing Figure 7 to Figure 6 shows the distributions shifted

to the right for interrupts, suggesting annoyance levels are higher

for the number of interrupts tested compared to the amount of

buffer delays tested. This relationship becomes clearer when com-

paring the mean values.

Figure 8 shows a graph of the mean annoyance levels versus the

buffer delays and number of interrupts. The bottom x-axis is the

buffer delay in seconds and the top x-axis is the number of inter-

rupts. The y-axis is the annoyance level. Each point is the mean

annoyance level across all users, shown bounded by a 95% confi-

dence interval. There is a noticeable increase in the mean annoy-

ance level as both the buffer delay and the number of interrupts in-

crease, with a more sharp increase in annoyance on the left side of

the trendlines compared to the right. The trend in QoE with buffer

delay independently confirms results reported previously [10].

Since each interrupt is 1 second, there is some merit in compar-

ing, for example, 4 interrupts to 4 seconds of buffer delay in that

they both have the user wait for the same amount of time. Compar-

ing the interrupts trendline to the buffer delay trendline shows the

means are higher for interrupts, suggesting annoyance levels are
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Figure 8: Mean annoyance for buffer delay (bottom axis and

trendline) and interrupts (top axis and trendline).

higher for the same amount of waiting when, as is true for inter-

rupts, the waiting is divided into pieces and occurs in the middle

of the video. While this result has been suggested before (e.g., [10])

and may even make intuitive sense, to the best of our knowledge,

Figure 8 is the first graph to quantitatively compare buffering and

interrupts. Moreover, the data allows trading-off interrupts and

buffer delay and computing Quality of Experience (QoE) with an

analytic model (next section).

4.3 Model

Based on Egger et al. [9], since the expectation is for annoyance to

increase sharply then more gradually as the number of interrupts

and amount of buffer delay increase, we fit7 a logarithmic regres-

sion model to the annoyance level for both buffer delay and inter-

rupts. For buffer delay, the resulting model for annoyance level �1

(from 1 (low) to 5 (high)) is:

�1 =

{

1.4 + 1
3 ;= (1) 1 ≥ 0.6

1.25 >Cℎ4AF8B4
(1)

where 1 is the buffer delay, in seconds. The model is shown as the

lower dashed curve in Figure 8. The adjusted '2 is 0.88.

For interrupts, the resulting model for annoyance level for in-

terrupts �8 (from 1–5) is:

�8 =

{

2 + 3
4 ;= (8) 8 ≥ 0.4

1.25 >Cℎ4AF8B4
(2)

where 8 is the number of interrupts. The model is shown as the

upper dashed curve in Figure 8. The adjusted '2 is 0.99.

Note, given the natural logarithms in Equations 1 and 2,�1 and

�8 go asymptotically to −∞ as buffer delay and interrupts go to

zero, respectively. Since the average annoyance level is 1.25 for

the control video (no interrupts, no buffer delay), that is used as a

minimum value for both functions.

The user study byMok et al. [16] suggests there is no interaction

between interrupts and initial buffering in determining QoE. Thus,

7Using R, https://www.r-project.org/
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Figure 9: QoE for interrupts versus buffer delay. The curved

line depicts where annoyance from buffer delay (x-axis)

equals the annoyance from number of interrupts (y-axis).

assuming the annoyance due to buffer delays is independent of the

annoyance due to number of interrupts, the total annoyance level

�C is then:

�C = �1 +�8 (3)

Equation 3 allows for a direct comparison of the degradation in

QoE (increased annoyance, in our case) due to buffer delays (�1 )

and number of interrupts (�8 ), respectively. Since the client video

player has direct control of the playout buffer size (the buffer de-

lay), it is useful to relate the number of interrupts to the playout

buffer delay. Solving for where the annoyance from the number of

interrupts (8) is equivalent to the annoyance from the seconds of

buffer delay (1) (�8 = �1 ) yields:

8 = 4
4;= (1)−7.2

9 (4)

Figure 9 depicts the equal number of interrupts-buffer delay re-

lationship by graphing Equation 4. The x-axis is the buffer delay

chosen by the client and the y-axis is the resulting number of inter-

rupts for that buffer size. The blue line is the curve from Equation 4.

For example, a streaming video with 30 seconds of buffer delay has

about the same level of annoyance as 2 interrupts. The area below

this curve is where the user is more annoyed by the buffer delay

than by the interrupts. The area above this curve is where the user

is more annoyed by the interrupts than by the buffer delay.

The blue curve in Figure 9 provides guidance for choosing the

buffer size (hence the buffer delay). When streaming, if the buffer

size chosen and resulting number of interrupts lies below the curve,

the buffer should be decreased until the buffer delay & number of

interrupts intersects the curve. Similarly, if the buffer size chosen

and resulting number of interrupts lies above the curve, the buffer

size should be increased until the buffer delay & number of inter-

rupts intersects the curve.

For example, consider a hypothetical example in Figure 10. The

x-axis is the buffer delay chosen by the client and the y-axis is the

resulting number of interrupts. The red zig-zag line represents the

https://www.r-project.org/
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Figure 10: Choosing Buffer Size. Red zig-zag line represents

video quality for different buffer sizes. QoEs for indicated

points are shown in upper right.

set of QoEs that could be achieved for the playout of this particu-

lar video under this specific set of network conditions. The client

video player could choose a playout buffer anywhere along the x-

axis and, for this particular situation, the corresponding number

of interrupts would lie on the given red line. For example, if the

client chose a 50 second buffer, there would be 1 interrupt during

playout. Increasing the buffer size where the red line is horizontal

only increases the buffer delay but does not decrease the number

of interrupts. For example, increasing the buffer from 50 to 60 sec-

onds still has 1 interrupt. Thus, the best QoE is at one of the points:

A, B, C or D.

Using Equation 3, the QoEs for points A, B, C and D are com-

puted and shown in the upper right corner of Figure 10 (lower is

better). The best quality is achieved at point C, where the QoE is

4.2. Point C is better than points A or B because a modest increase

in the buffer size from 0 to 10 seconds decreases the number of in-

terrupts from 4 to 1. Decreasing the interrupts from 1 to 0, however,

going from point C to point D, requires 100 seconds of buffering

which is not worth the cost to QoE.

5 CONCLUSION

Video players accommodate the variations in bitrates inherent in

today’s Internet using playout buffering, especially important for

wireless video over mobile devices where bitrates can vary con-

siderably. Playout buffers hold arriving video for a short period

of time before playing it out, thus providing smooth playout even

when the network bitrate momentarily drops below the playout

rate. In fact, if large enough, playout buffers can completely elim-

inate all mid-stream video interruptions. However, a larger buffer

means a longer waiting time for the user to start the video. Thus,

there is a trade-off between the delay in buffering and the inter-

rupts in video playout.Having a quantifiable impact of delay buffer-

ing and number of interrupts onQuality of Experience (QoE)would

allow for models that could help determine the buffer size that

maximizes QoE for given video and network conditions. While

past work has studied aspects of the problem, choosing buffer sizes

based on heuristics or has studied the effects of video parameters,
including playout interrupts, on QoE, to the best of our knowledge,

there have not been measurements directly comparing the impact

to QoE from buffering delays versus number of interrupts.

This paper presents the derivation of a model that can ascer-

tain the best streaming video buffer size based on the impact on

QoE from buffering delay and number of interrupts. A wide range

of short videos were selected and encoded with 4 different buffer

times and 4 different numbers of interrupts. A user study with 37

participants had users watch the videos in a controlled setting, pro-

viding quantifiable ratings comparing QoE under the different con-

ditions. Analysis of the data shows interrupts have a much greater

impact on QoE, about 2x greater, than does buffering for the same

amount of time. An analytic model derived from the data allows

computation of the exact QoE for a video with a given buffer delay

and interrupt count, providing a tool for analyzing buffer sizing in

video clients to determining buffer sizes that maximize QoE.

While the model is a promising step towards choosing and eval-

uating playout buffer sizes, there are additional areas of future

work that can be considered. The QoE model, Equation 3, assumes

the impact of buffer delay and number of interrupts on QoE are in-

dependent.While this assumption is supportedby other research [16],

a user study that explicitly measures user annoyance with videos

with both interrupts and delay can verify if this assumption holds

and, if appropriate, derive a needed interaction term. Our QoE

model was developed from a set of specific video parameters –

1280G720?8G4;B , 30 f/s and 30 seconds long and interrupt lengths

were fixed at 1 second, evenly spaced. Additional research can in-

vestigate if the results hold for a wider range of video lengths and

encoding parameters, buffering lengths and interrupt lengths and

distributions – Internet bitrate decreases can be uneven. The in-

teraction between accompanying audio may also be worth study-

ing as there was some indication that interrupts during speech or

music was more annoying than interrupts during silence. Lastly,

the results are taken in a laboratory setting which may influence

user tolerance for buffer delay and interrupts compared to, say, a

living room couch. Future work could repeat the experiments in

non-laboratory settings and tease out “real-world” differences that

impact user QoE tolerances.
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