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ABSTRACT
Packet loss can severely impact streaming video quality. Re-
pair techniques protect streaming video from packet loss but
at the price of a reduced effective transmission rate when
streaming a flow in a capacity constrained situation. This
paper proposes an algorithm that optimizes the choice of
Forward Error Correction (FEC) to repair packet loss for
streaming MPEG videos under a capacity constraint with
quality scaling. An analytic model is developed to estimate
the video quality of streaming MPEG given a quality scal-
ing level and a specific FEC strength. Given network con-
ditions in terms of packet loss rate, the model searches the
total variable space to find the combination of FEC and
scaling that yields the optimal quality under the capacity
constraint. Analysis over a range of network conditions in-
dicates that adjusting FEC with quality scaling provides
significant performance improvement.

Categories and Subject Descriptors: C.2.m Computer-
Communication Networks: Miscellaneous

General Terms: Performance, Design

Keywords: Streaming MPEG, Quality Scaling, Forward
Error Correction

1. INTRODUCTION
The growth in the power and connectivity of the Internet

has sparked an even larger growth in streaming media. Al-
though many compression techniques have been introduced
to reduce the streaming bitrate [11], video streaming over
the Internet is often still limited by the network capacity.
For example, one capacity constraint comes from the Inter-
net Service Provider’s (ISP) negotiated rate that restricts
capacity on the home user’s last mile. Another capacity
constraint comes from the growing consensus that all Inter-
net traffic must be TCP-Friendly. A flow is TCP-Friendly

if its data rate does not exceed the maximum data rate of a
conformant TCP connection under equivalent network con-
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ditions. There are proposed approaches to detect and re-
strict the capacity of non-TCP friendly flows [9]. Streaming
media applications that ignore these constraints suffer data
loss in the form of dropped packets.

While multimedia applications can tolerate some data loss,
excessive packet loss yields unacceptably low quality. Since
video encoding relies upon frame dependencies to achieve
high compression rates, the random dropping of packets by
routers can seriously degrade video quality. For example, as
little as 3% MPEG packet loss can cause 30% of the frames
to be undecodable.

To avoid the latency and variance in latency caused by re-
transmission of lost packets, streaming media flows often use
Forward Error Correction (FEC) to reconstruct lost stream-
ing media packets. However, FEC adds redundant repair
data to the original video stream. Current approaches use
either apriori, static FEC choices or FEC that adapts to
perceived packet loss on the network. However none of the
published adaptive FEC schemes account for the additional
FEC overhead against a capacity constraint. With a capac-
ity constraint, adding FEC reduces the effective transmis-
sion rate of the original video content [10].

To preserve real-time playout, multimedia servers use me-
dia scaling to reduce the streaming data rate to match the
capacity constraint. With quality scaling, the multimedia
server adjusts the quantization level before transmission to
reduce the streaming bitrate. When used in conjunction
with FEC, a multimedia application can increase the quan-
tization level even higher to save capacity for the FEC over-
head. Hence, selecting the appropriate amount of FEC and
the corresponding quantization level can be cast as a con-
strained optimization problem that attempts to optimize the
video streaming quality.

Previously, we derived a model of playable frame rate for
streaming MPEG [21] that did not account for media scal-
ing. This paper extends the analytic model to characterize
quality-scaled MPEG video performance with FEC in the
presence of packet loss. For a given loss rate and MPEG
characteristics, the new model utilizes a specified quality
scaling level and number of FEC packets for each MPEG
frame type to estimate video distortion. Based on the model,
the optimization algorithm exhaustively searches all pos-
sible combinations of FEC and scaling level to determine
the configuration that yields the best capacity-constrained
video quality. Experimental results show that adjusting
FEC with quality scaling (QAFEC) provides significant ben-
efits to video quality.



The remainder of the paper is organized as follows: Sec-
tion 2 provides background for the work in this paper; Sec-
tion 3 introduces the analytical quality model; Section 4
presents the optimization algorithm; Section 5 discusses ex-
periments, including a preliminary user study, and analyzes
the results; and Section 6 summarizes the paper and presents
possible future work.

2. BACKGROUND

2.1 MPEG and Quality Scaling
There are four frame types defined in MPEG-1 [11]: I

(intra-coded) frames, P (predictive-coded) frames, B (bi-
directionally predictive-coded) frames and D (DC-coefficients
only) frames. However, the seldom-used D frame is excluded
from our model of MPEG. MPEG video typically repeats a
pattern of I, P, and B frames (known as a Group of Pictures
or GOP) for the duration of a video stream. Figure 1 shows
the typical GOP used in this paper.
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Figure 1: A typical MPEG Group Of Pictures

In MPEG, the DCT coefficient of the video signal is quan-
tized by dividing by an integer (the quantization value), and
rounding to the nearest integer. When using higher quan-
tization values, each MPEG frame is encoded with lower
precision, and transmitted with fewer bits. Thus, this qual-
ity scaling technique reduces the bitrate of the streaming
video.

Proposed mechanisms for quality scaling include: adap-
tive quantization values [20], which adapts the encoding
quantization value to network capacity; signal-to-noise ratio
(SNR) scalability [16], which encodes a video clip into multi-
ple layers and streams as many layers as possible; MPEG-4
fine granularity scalability (FGS) [7], which is a special case
of SNR scalability that provides continuous scalability us-
ing partial enhancement; and scalable MPEG (SPEG) [6],
which transcodes MPEG’s DCT coefficients to a base level
plus three enhanced levels and transmits different numbers
of levels.

While this report focuses on using adaptive quantization
values, the model developed (Section 3) is independent of
the scaling technique and only requires the relationships be-
tween scaling level, encoding bitrate and video quality.

2.2 Forward Error Correction(FEC)
Reed-Solomon (R-S) code [15] is a media-independent FEC

technique that can be applied at the packet level. As shown
in Figure 2, an application level video frame is modeled as
being transmitted in K packets where K varies with frame
type, encoding method, and media content. R-S code adds
(N − K) redundant packets to the K original packets and
sends the N packets over the network. Although some pack-
ets may be lost, e.g. packet 2 in Figure 2, the frame still
can be completely reconstructed if any K or more packets
are successfully received.

1 2 K Original Video Frame

1 2 K K+1 N After Adding FEC Packets

1 K K+1 N

1 2 K

After Network Transmission
(some packets are lost)

After Reconstruction
(with any K correct packets)

Figure 2: Reed-Solomon code

To analyze the effects of FEC on application layer frames,
the sending of packets is modeled as a series of independent
Bernoulli trials. Thus, the probability q(N, K, p) that a K-
packet video frame is successfully transmitted with N − K

redundant FEC packets along a network path with packet
loss probability p is:

q(N, K, p) =

N
X

i=K

»„

N

i

«

(1 − p)i ∗ p
N−i

–

(1)

3. MODEL

3.1 Parameters and Variables

System Layer Parameters
Application SI , SP , SB, NP , NB , RF

Presentation SIF , SPF , SBF , l

Network p, tRTT , s, T

Table 1: System Layers and Parameters

The system layers and parameters for our analytic model
are indicated in Table 1, where the parameters are:

RF : the maximum playable frame rate achieved when
there is enough capacity and no loss (While typical frame
rates are 25 fps (PAL) or 29.97 fps (NTSC), this paper uses
the NTSC frame rate and rounds it up to RF = 30fps).

SI , SP , SB: the size of I, P or B frames respectively, in
fixed size packets.

NP , NB : the number of P or B frames in one GOP, re-
spectively.

SIF , SPF , SBF : the number of FEC packets added to
each I, P or B frame, respectively.

l the quality scaling level, assuming I, P and B frames
have the same level.1

s: the packet size (in bytes).
p: the packet loss probability.
tRTT : the round-trip time (in milliseconds).
T : the capacity constraint, limited by the ISP or by a

TCP-Friendly rate [13].

3.2 Distortion from Quality Scaling
When a video is streamed over an unreliable network un-

der a capacity constraint, its perceptual quality is degraded

1While using different quality levels for different frame types
is possible, capturing the quality dependencies between dif-
ferent frames is difficult. This remains as future work.



by two factors: quality scaling and frame loss. Scaling dis-
tortion, caused by a high quantization value, appears visu-
ally as coarse granularity in every frame. Frame loss, due to
network packet loss, yields jerkiness in the video playout.

This paper uses the Video Quality Model (VQM) [14], an
objective video quality measurement, to approximate the
distortion due to quality scaling. Section 3.3 uses playable
frame rate to estimate the distortion from frame loss. Sec-
tion 3.4 presents a new measurement, namely, distorted play-
able frame rate that combines these two factors.

VQM takes an original video and a distorted video as
input and returns a distortion value D between 0 (no dis-
tortion) and 1 (maximum distortion). Previous research [3]
implies that perceptual video distortion varies exponentially
with the quantization value. Employing VQM to measure
D in videos encoded with varying quantization levels, our
preliminary studies show that D can be approximated as an
exponential function of the quantization value l:

D = D̂ · lλD (2)

where l is the quantization level, D̂ is the VQM distortion
when l = 1, and λD is the exponential coefficient. Table 3 in
Section 5.2 provides an example that shows how accurately
this function fits real video data.

3.3 Playable Frame Rate

3.3.1 Frame Size
Frame sizes change with the quality scaling level. Pre-

vious researches [3, 19] demonstrate that MPEG streaming
bitrate can be approximated by an exponential function of
the quality scaling level l. Our preliminary experiments sug-
gest frame size can be estimated by exponential functions of
quantization value l given as:

8

<

:

SI = ŜI · lλI

SP = ŜP · lλP

SB = ŜB · lλB

(3)

where l is the quantization level, Ŝ∗ is the frame size when
l = 1, and λ∗ is the exponential coefficient. Note, all the
results S∗ are rounded up to the nearest integer dS∗e since
video frames must be sent over the network in an integer
number of packets. Table 3 in Section 5.2 shows how accu-
rately these functions fit real video frame sizes.

3.3.2 Successful Frame Transmission Probability
Given I, P, and B frame sizes, and the distribution of re-

dundant FEC packets added to each frame type, Equation 1
provides the probability of successful transmission for each
frame type, knowing the amount of redundancy added by
media-independent FEC:

8

<

:

qI = q(SI + SIF , SI , p)
qP = q(SP + SPF , SP , p)
qB = q(SB + SBF , SB, p)

(4)

3.3.3 Playable Frame Rate
Our previous work [21] derived a model to estimate total

playable frame rate for streaming MPEG:

R = G · qI · (1 +
qP −q

NP +1

P

1−qP

+ NBP · qB

· (
qP −q

NP +1

P

1−qP

+ qI · qNP

P ))
(5)

where G is the constant GOP rate, NP is the number of P
frames, NBP is the number of B frames between two refer-
ence frames (I or P frame), and q∗ is the successful trans-
mission probability of I, P or B frames determined from
Equation 4.

Treating I, P and B frame sizes as functions of the quality
scaling level l given in Equation 3, the model can be ex-
tended to estimate the playable frame rate and subsequently
used to estimate the quality distortion due to frame loss.

3.4 Distorted Playable Frame Rate
Quality scaling uses a higher quantization value to encode

the video, causing intra-frame quality distortion. Frame loss
lowers the playable frame rate and is referred to as inter-
frame quality distortion.

Since the inter-frame and intra-frame distortion compo-
nents are independent, it is assumed they contribute inde-
pendently to the overall distortion. Hence, quality distortion
can be represented by a function of these two factors. To
stream the highest quality video possible, the media server
needs to use the best quality scaling level and the media
client needs to receive all the frames. Thus, these two fac-
tors are combined into a multiplicative function, referred to
as the distorted frame rate, RD,:

RD = (1 − D) · R (6)

where D is the quality distortion from Equation 2 and R is
the playable frame rate from Equation 5.

The motivation behind RD is as follows. If a video is
streamed with the best quantization value, its quality scaling
distortion is 0 and video quality is determined only by the
playable frame rate R. With any other quantization value,
every frame carries less visual detail and its contribution to
the video quality (measured by frame rate) is reduced by
the quality distortion D. A preliminary user study (shown
in Section 5.3) shows a correlation between user perceptual
quality and distorted playable frame rate RD. This suggests
that RD may be a reasonable representation of overall video
quality.

4. OPTIMIZATION ALGORITHM
For given network conditions and MPEG video parame-

ters, the total distorted playable frame rate RD varies with
quality scaling level and the amount of FEC for each frame
type as a function RD(l, (SIF , SPF , SBF )) where streaming
bitrate is limited by a capacity constraint, T . Thus, this
model can optimize the distorted playable frame rate, RD,
using the following operation research equation:
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:

Maximize :
RD = (1 − D(l)) · R(l, (SIF , SPF , SBF ))

Subject to :
G · ((SI(l) + SIF ) + NP · (SP (l) + SPF )

+NB · (SB(l) + SBF )) ≤ T

(7)

Unfortunately, finding a closed form solution for the non-
linear function RD is difficult since there are many saddle
points. However, given that the optimization problem is
expressed in terms of integer variables over a restricted do-
main, an exhaustive search of the discrete space is feasible.
With fixed input values for (p,RTT, s), (G, NP , NB) and
functions of (SI(l),SP (l),SB(l)), each set of values of l and



(SIF , SPF , SBF ) determine the distorted playable frame
rate RD using the following steps:

1. Approximate the video frame sizes (SI ,SP and SB)
using l in Equation 3.

2. Estimate total video streaming bitrate using the video
frame sizes and the FEC frame sizes. If the estimated
bitrate is larger than the capacity constraint T , the set
of values of l and (SIF , SPF , SBF ) are invalid and RD

is returned as 0.

3. Otherwise, use the video frame sizes and the FEC sizes
to determine the successful transmission probabilities
(qI , qP and qB) from Equation 4.

4. Estimate playable frame rate R by inputting (qI , qP

and qB) into Equation 5.

5. Use l in Equation 2 to approximate D.

6. Employ R and D in Equation 6 to estimate the dis-
torted playable frame rate, RD.

With these steps for each set of values, the space of possi-
ble values for l and (SIF , SPF , SBF ) is exhaustively searched
to determine the quality level and the amount of FEC pack-
ets for each frame type that yields the maximum distorted
playable frame rate under the capacity constraint. Since the
search can be done in real-time 2, the determination of opti-
mal choices for adaptive FEC and quality scaling is feasible
for streaming MPEG.

While the quality adjusted FEC (QAFEC) model assumes
MPEG frame sizes are constant for the entire video, in prac-
tice MPEG frame sizes change from one GOP to the next.
To assess the impact of changing frame sizes on the model,
we used the QAFEC model to determined the adjusted FEC
and scaling assuming an average fixed frame size. Then, a
simulation using trace-based frame sizes [18] was run and ac-
tual playable frame rate at the receiver was measured. The
frame rate predicted by the model was slightly higher than
the actual frame rate achieved. However, the difference was
negligible for loss rates around 1% and was less than 10%
for higher loss rates. Details can be found in [22].

5. EXPERIMENTS

5.1 Methodology
Using the optimization algorithm, the distorted playable

frame rates over a range of network and application settings
are explored. For each set of network and application pa-
rameters, the playable frame rates are compared for MPEG
streaming with quality adjusted FEC, MPEG streaming with
two types of fixed FEC, and MPEG streaming without FEC:

1. Quality Adjusted FEC: Before transmission, the server
employs the optimization algorithm based on the QA-
FEC model to determine the FEC and quality scaling
levels that produce the maximum distorted playable
frame rate RD and uses these for the entire video trans-
mission.

2It takes about 100 milliseconds to find the best FEC and
scaling pattern using our approach on a Pentium-3 800 MHz
PC. Optimizations of the code and a faster machine will
allow searching to be done even faster.

2. Large Fixed FEC: The server protects each frame with
15% FEC packets (moved up to the nearest integer).
This FEC pattern provides strong protection to each
frame and roughly represents the relative importance
of the I, P and B frames [4, 8].

3. Small Fixed FEC: Each I frame receives 1 FEC packet.
This simple FEC pattern protects the most important
frame, the I frame. Protecting the I frame is a scheme
used by other researchers [2, 17].

4. Non-FEC: No FEC is added to the video.

The total bitrate used by the MPEG video and FEC is
scaled to meet a TCP-Friendly capacity constraint [13] us-
ing quality scaling. While other published approaches dy-
namically adapt FEC to current packet loss conditions, the
resultant total bitrates do not satisfy a capacity constraint.
Thus, there is no simple way to compare QAFEC to other
dynamic FEC approaches.

5.2 System Settings

Network Layer Application Layer

tRTT 50 ms NP 4 frames per GOP
s 1 Kbyte NB 10 frames per GOP
p 0.01 to 0.04 RF 30 frames per second

Table 2: System Parameter Settings

Table 2 presents the system parameter settings for the
network and application layers. A commonly-used MPEG
GOP pattern, ‘IBBPBBPBBPBBPBB’, and a typical full motion
frame rate RF of 30 frames per second (fps) are used. The
packet size s, round-trip time tRTT and packet loss prob-
ability p are chosen based on the characteristics of many
network connections [1, 5]. For all experiments, the param-
eters are fixed, except for packet loss probability p, which
was varied from 0.01 to 0.04 in steps of 0.002.

Two picture sequences are used. The first video, Paris,
from PictureTel, shows two people sitting at a table and
talking while making high-motion gestures. It has 900 raw
images and lasts for 30 seconds, providing a frame rate
of 30 fps. The image size is 352x288 pixels (CIF). The
Berkeley MPEG encoder mpeg encode [12] is used to en-
code the images with different quantization values as one-
minute long videos. From the output videos, the frame
sizes are extracted with the Berkeley MPEG statistics tool
mpeg stat [12] and the quality distortion is extracted with
VQM. Statistical analysis software SPSS 3 is used to fit the
relation between quality distortion and l to a function as in
Equation 2, and the relation between frame sizes and l in
Equation 3. The equations then become:
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D = 0.025 · l0.87

SI = 81.51 · l−0.70

SP = 52.94 · l−1.21

SB = 15.47 · l−0.79

(8)

Table 3 shows how these analytical functions fit the Paris
data with some representative quantization values. In the

table, l is the quantization value, D
′

, S
′

I , S
′

P , S
′

B are esti-
mated by the analytical functions, and D, SI , SP , SB are

3http://www.spss.com



the real values from the video analysis. Overall, the func-
tions fit the data well.

l D
′

D S
′

I SI S
′

P SP S
′

B SB

5 0.10 0.09 26.4 26.5 7.5 7.8 4.3 4.5
8 0.15 0.15 19.0 19.5 4.2 4.6 2.9 2.8

12 0.21 0.22 14.3 14.5 2.6 2.8 2.1 2.0
18 0.31 0.33 10.7 10.7 1.6 1.6 1.5 1.4
24 0.39 0.38 8.8 8.7 1.1 1.1 1.2 1.2
31 0.49 0.48 7.3 7.2 0.8 0.7 1.0 1.1

Table 3: Estimated Value by Equation 8 versus Real

Video Data

The second video sequence is Tennis, which comes with
the Berkeley tools. Tennis, a short clip of two men play-
ing ping-pong, has 150 raw images and lasts for 5 seconds,
providing a frame rate of 30 fps. The size of each frame
is 352x240 pixels. Again, the Berkeley MPEG tools, VQM
and SPSS are used to approximate the quality distortion
and frame sizes to functions of quality scaling level:
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D = 0.041 · l0.69

SI = 74.55 · l−0.86

SP = 96.22 · l−1.31

SB = 33.27 · l−1.01

(9)

Due to space constraints, the functional fit for Tennis is
not shown, but the approximation errors are less than 5%.

Note, analyzing videos and fitting the results to these ex-
ponential functions is a time-intensive operation. It may be
possible to analyze a large variety of video types and find
parameters for the exponential functions, based either on
the frames sizes, frame rates and video content, that are
generally effective. This analysis is left as future work.

5.3 Analysis of Results
The Paris and Tennis videos are used to approximate

their quality scaling distortion D and frame sizes to func-
tions as Equation 2 and Equation 3 and instantiate them to
Equation 8 and Equation 9. These functions and the opti-
mization algorithm are used to search the FEC and quality
scaling values to produce the maximum distorted playable
frame rate for the four approaches in Section 5.1.

Figure 3 graphs the distorted playable frame rates for the
four FEC choices for the Paris and Tennis videos. The x-
axes are the packet loss probabilities, and the y-axes are the
distorted playable frame rates. From the data in these fig-
ures, quality adjusted FEC provides the best quality under
all network and video conditions. The benefits of quality
adjusted FEC over non-FEC are substantial, with quality
adjusted FEC providing 5-10 more frames per second for
all rates. The small fixed FEC approaches usually improves
playable frame rates over non-FEC video, especially when
loss rates are high. However, the small fixed FEC frame
rates are still much lower than the frame rates with quality
adjusted FEC. Large FEC achieves the playable frame rate
provided by quality adjusted FEC for low loss rates because
the TCP-Friendly rate is relatively high. With limited ca-
pacity (at high loss rates), the quality scaling level is high
(> 16), and the large FEC overhead becomes significant.
There is little reduction in the frame sizes as the scaling
level increases (to a maximum of 31) and quality scaling is
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Figure 3: Distorted Playable Frame Rates

unable to conserve enough bitrate to overcome the effect of
the large FEC overhead. The result is that none of the orig-
inal video data is sent. These trends hold for both videos
despite differences in the content between the two clips.

A preliminary user study was conducted to compare the
impact of FEC choices on actual users and begin to ascertain
the efficacy of the distorted playable frame rate measure,
RD, as a measure of perceived visual quality. Four versions
of the Paris video clips were generated, simulating the Qual-
ity Adjusted FEC approach, the two fixed FEC strategies
and the Non-FEC approach on a network with 0.02 packet
loss and a TCP-Friendly constraint of 1.17 Mbps. No local
concealment technique is used; if a frame was not playable,
the preceding playable frame was repeated. Ten undergrad-
uate students were asked to rate the quality from 0 (worst)
to 10 (best) of the four videos using the original videos with
no packet loss as a reference. The ratings were provided
after viewing each clip twice in a different random order by
each student.

Repair method D R RD Q

Quality Adjusted FEC 0.17 28.55 23.78 6.89
Small Fixed FEC 0.20 23.58 18.90 4.44
Large Fixed FEC 0.44 30.00 16.93 3.89
Non-FEC 0.28 20.17 14.61 3.50

Table 4: Preliminary User Study

Table 4 displays the average user quality rating Q com-
pared with the VQM distortion D, the playable frame rate
R, and the distorted playable frame rate RD for the four
videos. The results indicate that the perceived qualities of
the videos with FEC are significantly higher than the videos



without FEC. Additionally, QAFEC videos appear notice-
ably better under all the conditions than videos with fixed
FEC. Perhaps most importantly, the correlation between Q

and RD suggests that the distorted playable frame rate RD

appropriately represents perceived quality, accounting for
both the temporal aspects of the video that influence per-
ceived quality (R) and the quality aspects of the video that
influence perceived quality (D).

It may be surprising that non-FEC has a higher VQM dis-
tortion D since non-FEC has a higher encoding bitrate with-
out any FEC overhead. The reason is, if non-FEC chooses
a better (lower) quantization level l under the capacity con-
straint, it will increase the frame sizes, reducing the suc-
cessful transmission probability for each frame and getting
a much lower playable frame rate. So, non-FEC selects a
conservative quantization level to get better overall quality.

6. SUMMARY
This investigation studies adjusting FEC with quality scal-

ing for streaming MPEG. An analytic model (QAFEC) is
proposed that captures the quality distortion of streaming
MPEG in the presence of quality scaling and frame loss.
Using this model, an optimization algorithm determines the
optimal adjustment of FEC and quality scaling under a ca-
pacity bound, accounting for both the network conditions
and video parameters.

The analytic experiments show that QAFEC has signif-
icant advantages. Quality adjusted FEC always achieves
higher quality than MPEG video without FEC and provides
higher video quality than fixed FEC approaches when taken
over a range of MPEG encoding and network conditions. A
preliminary user study confirms the experiments in demon-
strating that the perceived quality of the videos with quality
adjusting FEC are significantly better than the videos with
fixed FEC or without FEC. The user study also suggests
that the proposed distorted playable frame rate, RD, has
the appropriate trend in capturing the distortion to video
quality from quality scaling and frame loss.

Our ongoing work includes: implementing a streaming
MPEG system that includes the model and the optimiza-
tion algorithm; adding other quality scaling techniques, such
as MPEG FGS to the model; and extending the model to
compare and combine quality scaling and temporal scaling.
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