
Assigning Game Server Roles in Mobile Ad-hoc Networks

Oliver Wellnitz Lars Wolf
IBR

Technische Universität Braunschweig
Mühlenpfordtstrasse 23, 38106 Braunschweig, Germany

{wellnitz|wolf}@ibr.cs.tu-bs.de

ABSTRACT
Over the last couple of years, multi-player games have be-
come more and more popular. Additionally, new mobile de-
vices now have sufficient resources to play these multi-player
games in mobile and wireless networks. As the classic cen-
tralised game server design is unsuited for mobile ad-hoc
networks, a group of nodes can take the role of a distributed
game server. This group of nodes can provide the necessary
redundancy which is needed in the dynamic environment of
a mobile ad-hoc network.

In this paper we present a modified dominating set al-
gorithm for server selection which uses local information to
determine well-suited nodes from the group of players. Our
algorithm uses three phases (discovery, determination and
marking) to calculate an initial server set and adjusts to net-
work changes during the game. We implemented our server
selection algorithm in NS-2 and evaluated its behaviour in
two different realistic scenarios for mobile games (schoolyard
and train) as well as in an artificial stress scenario.

1. INTRODUCTION
Multi-player games have become very popular in the last

couple of years. However to allow for players to compete
against each other, these networked games usually require
the users to be on the same LAN or have persistent connec-
tion to the Internet for the duration of the game. Addition-
ally, mobile computers have become increasingly popular
and are now on par with desktop computers to play today’s
games. Furthermore, the introduction of hand-held game
consoles with wireless capabilities like Sony’s Playstation
Portable (PSP) or Nintendo’s Dual-Screen (DS) underline
the development towards playing multi-player games any-
time and anywhere.

Mobile ad-hoc networks can support this paradigm by of-
fering wireless communication between players without any
need for networking infrastructure. These networks can be
created in a spontaneous manner whenever two devices move
within communication range of each other. Additionally,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’06 Newport, Rhode Island, USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

mobile ad-hoc networks can support communication to re-
mote devices by using intermediate nodes as relays to for-
ward data to their destination. Thus, multi-hop ad-hoc net-
works can grow beyond the range of a single wireless trans-
mitter by using a fair cooperation between mobile devices,
In [6] we proposed a game architecture for mobile ad-hoc
networks.

In general, multi-player games for mobile devices often do
not take the different networking environment into account.
Wireless networks are more error-prone than wired networks
because of radio interferences, distortion, diffraction, reflec-
tion and device mobility. Thus, existing approaches like
a central game server for a multi-player game are unsuit-
able for networks with such a dynamic environment. On
the other hand a fully distributed approach like peer-to-
peer networks does not make efficient use of the available
bandwidth, makes cheating in a game easier and does not
take differences in terms of resources of the mobile devices
into account. By using a distributed server architecture,
the game can create the necessary redundancy while keep-
ing network requirements at a minimum. Each game server
is responsible for game clients in his vicinity to which it can
communicate efficiently. In [6] we introduced the idea of
zone servers, which are responsible for a certain area (zone)
of the network. Zone servers are not independent devices.
The game server software runs on a player’s mobile device
in addition to the game client. Zone servers communicate
in a peer-to-peer fashion with each other. Although, due
to the knowledge of the game rules, they are able to make
local decisions on their own and delay and aggregate or omit
information to other servers. We propose that these game
servers should be determined from the group of players and
that this selection should be made based on the capabilities
and performance of the mobile device as well as its position
in the ad-hoc network. Other possible factors may include
mobility information, battery level and energy consumption
or the player’s trustworthiness to act as a game sever.

In this paper we propose an algorithm which determines
a number of suitable servers from the group of player nodes.
To keep network overhead low, our algorithm uses only local
information and information gathered from its direct neigh-
bours. The algorithm is not specific for a certain game genre
or multi-player games in general but can also be applied for
other kinds of mobile ad-hoc applications which use a dis-
tributed server architecture. Furthermore, as a side effect,
the results from our algorithm also produce a list of nearby
servers for game clients which makes the game server se-
lection process that follows our game server determination



algorithm easier. After a number of game servers have been
determined by the algorithm, the game client is responsi-
ble of selecting a suitable game server. The game server
selection itself is out of scope of this paper.

The remainder of this paper is structured as follows: Sec-
tion 2 gives some background information and discusses de-
sign issues. Section 3 gives an overview of related work.
Section 4 explains the three phases of the game server deter-
mination algorithm in detail. Section 5 discusses additional
server determination during the game. Section 6 shows an
evaluation of our algorithm and section 7 discusses some im-
provements. In section 8, we briefly address the problem of
cheating for our algorithm. Finally, section 9 concludes this
paper.

2. DESIGN ISSUES
Figure 1 shows an example of a mobile ad-hoc network in

which vertices represent mobile nodes and edges denominate
the possibility of a direct wireless communication between
two nodes. For this paper, we assume that every link be-
tween two nodes is bidirectional.

We distinguish two different types of nodes participating
in the game: Players actively take part in the game (player
nodes) while other nodes cooperatively forward traffic in
the network but otherwise do not have knowledge about
the game or our server determination algorithm (supporting
nodes). Supporting nodes may use the network for other
applications and may also rely on player nodes to forward
their traffic to its destination. Examples of supporting nodes
could be two business people sharing information or a per-
son who needs other nodes to forward Internet traffic to the
nearest access point which is not directly reachable from his
position.

All nodes using the ad-hoc network have a self-interest
that this network works properly and that their traffic is
forwarded. Therefore, they also fulfill their responsibility to
forward traffic from other nodes. However, this self-interest
is not satisfied in the case of being selected as a game server.
We think that only players of the game have an interest
in keeping the game running while supporting nodes will
only forward game traffic because of their own needs from
the network. They also may not have the necessary game
server software installed on their device or allow that kind of
software to drain their sparse device resources. Therefore,
we believe that only player nodes should be considered when
determining servers for the game. Hence, we define server
nodes to be a subset of the group of player nodes.

Because radio communication is a broadcast medium, in
principle every data transmission can be received by any
node in the sender’s neighbourhood. We can use this net-
work characteristic by using broad- or multicast to efficiently
communicate information from the server to its players. Hence,
we aim at determining servers which are a dominating set
of the player nodes in which all servers can communicate
directly with their players. During the game, as nodes move
around and the network topology changes, we also allow dis-
tances of two hops between server and player. If a player
moves further away from its server and discovers no new
nearby server to which he can initiate a handoff, he initiates
a new server determination process in his neighbourhood.

However, a single player could exist isolated in the ad-hoc
network, with only supporting nodes nearby and all other
players and servers located more than two hops away. This

Supporting node

0

2

3

0

Legend:

Player node

D

G

F

B

C

H

E

A

I

7

8

4

Figure 1: Example of an ad-hoc network

remote player should connect to its nearest server rather
than become a game server itself.

As depicted in Figure 1, every player node has a weight
associated with itself which represents the node’s ability to
host a server for the game. This weight is computed locally
and may include information about available resources like
CPU power, free memory, battery time left or predicted mo-
bility. A node with a weight of zero is not considered as a
server for the game.

The degree of a node is defined as the number of edges
between this particular node and other nodes in the net-
work. This degree has to be determined in cooperation with
a node’s neighbours. For example, in Figure 1 node E is par-
ticipating in the game and has determined it has a weight
of 3. It can also communicate directly with six other nodes,
so it’s degree is six.

3. RELATED WORK
Determining a group of game servers where each server is

in the vicinity of a group of players resembles a dominating
set from graph theory. A dominating set describes a subset
of nodes of a graph and is defined as follows: For all nodes,
either the node itself or a direct neighbour is a member of
the dominating set. A dominating set that minimises the
number of dominating nodes is called minimum dominating
set. Determining a minimum dominating set (MDS) is an
np-hard problem.

Kuhn and Wattenhofer[5] introduced a distributed algo-
rithm to find a fast and non-trivial approximative solution
to the MDS problem in a constant number of rounds. They
achieve this goal by using information about the degree of all
neighbours up to the distance of two and a suitable weight
function.

CEDAR[7] is a distributed routing algorithm which sup-
ports quality of service. It relies on an approximated MDS
to calculate a core of nodes which are used to forward traffic.

In [8], Wu proposes a routing scheme which uses a dom-
inating set algorithm to determine a backbone in mobile
ad-hoc networks. Traffic is routed only by nodes in this
backbone while other nodes simply transmit their traffic to
the backbone nodes.



All these approaches give a good insight into the dis-
tributed calculation of dominating sets. However, they can-
not be directly applied onto the problem of game server
determination in mobile ad-hoc networks. As mobile ad-hoc
networks are heterogeneous consisting of devices with differ-
ent capabilities, a dominating set algorithm should take the
available resources of a device into account. Furthermore,
as discussed in the previous section only player nodes should
be considered as game servers.

4. THE ALGORITHM
Our algorithm comprises three phases. During the discov-

ery phase nodes exchange information about their resources
and capabilities as well as the total number of their neigh-
bours with other nodes in their vicinity. In the determina-
tion phase, every node determines itself or a neighbour as
a server for the game based on information gathered during
the discovery phase. In the final phase all nodes are tagged
and the tags are communicated back to the network. We
will now take a closer look at each phase.

4.1 The Discovery Phase
In the discovery phase, every node determines its weight

and degree. The weight is computed with local information
by the game application. Yet, the degree of a node must
be determined from other information. Information about
neighbouring nodes may already be present from previous
communication or from information from the routing pro-
tocol. As discussed in [1], low-layer beacons can be used to
create a neighbour list without any additional overhead.

Every node periodically broadcasts its ID, weight and de-
gree in status updates packets of 20 bytes size to its neigh-
bours during the whole game session. This information is
collected and stored by all nodes in a status table together
with a tag which is initially empty. Table 1 shows an exam-
ple of such a status table.

Node ID Weight Degree Tag

B 0 4 –
C 7 3 –
D 8 2 –
E 3 4 –
G 2 3 –

Table 1: Status table of node E

In Figure 1, the status update of node E is received by
all other nodes in the network but nodes A and I which are
farther than one hop away. While this broadcast message
is ignored by nodes F and H that are not participating in
the game, all other neighbours update their status table and
insert node E. Because node E does not necessarily know all
its neighbours, the initial status update packet may contain
a degree of zero. However, as other nodes send their sta-
tus updates as well, node E will learn about its number of
neighbours. As nodes F and H do not participate in the
game server determination algorithm, the degree of node E
in further status update messages might actually be lower
than its number of neighbours.

The discovery phase lasts a predetermined period of time,
usually a couple of seconds, after which each nodes moves
into the next phase. Additionally, a node can delay the

transition to the next phase if it has a neighbour in its status
table with a degree of zero. This is usually a node starting
late in the server determination process.

4.2 The Determination Phase
During this phase game servers are determined. Every

player node checks its status table to see which node has
the highest weight among all neighbouring nodes. If this
weight is greater than zero, this node becomes game server.
Otherwise, no game server is found. If the node itself has
the highest weight, it immediately knows about its new role.
For all other nodes, a ticket is sent to inform the node that it
has been determined as a game server. Nodes with a degree
of one are never selected as servers as they have no central
role in the network. Any game traffic to and from this node
would have to traverse this single link.

In our example in Figure 1, node E selects node D as
server, because it has the highest weight of all its neighbours.
Node D could also already have determined its server role
by itself, as neighbouring node H is not participating in the
game and neighbouring node C has a lower weight. In this
network nodes A, C, and D are determined as game servers
indicated by the dotted circle. The dashed arrows indicate
the game servers that could be selected by the players. Be-
sides node I all player nodes have a direct link to a game
server.

If two or more nodes in the status table have the same
weight, the node with the highest degree becomes server. If
weight and degree are the same, the node with the lowest
ID is selected.

4.3 The Marking Phase
The marking phase is the final phase of the server deter-

mination algorithm. During this phase, every node which
has been determined as a game server tags itself as a server.
Every node who is a direct neighbour to a server tags itself as
a neighbour. Nodes which are not a server or a direct neigh-
bour to a server get an empty tag. Every node broadcasts
its tag along with its weight and degree in the previously
mentioned regular status updates packets. The tags for all
node are also stored in the status table as can be seen in
Table 2.

Node ID Weight Degree Tag

D 8 2 Server
C 7 3 Server
E 3 4 Neighbour
G 2 3 Neighbour
B 0 4 Neighbour

Table 2: Final status table of node E

Player nodes which have become game server or have sent
a ticket to a neighbouring node can pass the information
about the nearest server directly to the game application.
Player nodes with no neighbouring server such as node I in
Figure 1 can use the information about server neighbours
by taking a look at their status table. For example, node I
can learn from its status table that a server can be reached
through node G and that the server is located at a distance
of two hops because node G is tagged as a server neighbour
in the status table of node I. Other player nodes with no



servers or server neighbours nearby have to rely on service
location mechanisms such as SLP[2] or Konark[3] to select
a suitable game server. This is also true for player nodes
which have only a supporting node between themselves and
a game server because supporting nodes do not take part in
the server determination process. These player nodes must
also use a suitable service discovery protocol.

5. MOBILITY MANAGEMENT
Ad-hoc networks are mobile and dynamic environments.

Unlike the Internet, assigning server roles and selecting a
suitable server for a client at startup time is not sufficient
for games in an environment that may change constantly.
The movement of a player, server or supporting node may
effect network performance in terms of latency, jitter or, to
a lesser importance for games, throughput.

To deal with such a changing environment and to allow for
a good network connection to its server, a game client should
be able to initiate a handoff to another, better-suited server
at any time. However, as a server handoff requires addi-
tional communication, the client should employ a threshold
mechanism to avoid constantly switching back and forth.
When a server node itself or its group of clients moves fur-
ther apart, its network performance may become unsuitable
for the game. The game application on a server node may
also decide to drop its server role after it had no clients for
some time. Finally, if a new player joins the game or a pow-
erful player node moves to a new position in the network, it
may be useful to use these nodes as additional servers during
the game.

To deal with mobility and a changing environment, we use
a fourth phase, the game phase, where each node monitors
changes during the game. Whenever a node discovers that
its distance to the next server has increased to three or more
hops, it starts a new server determination process in its area
of the network. A node can easily detect that no server is
available within two hops when there is no neighbour node
in its status table which has the server or server neighbour
tag. This node then restarts the algorithm with the deter-
mination phase. A state diagram for the complete algorithm
is shown in Figure 2. The synchronisation methods between
game servers and the setup of new servers were part of a
separate research work and are considered out of scope for
this paper.

Discovery

Determination

Marking

Game

Start

End

Server Determination
Algorithm

Figure 2: Algorithm State Diagram

Our algorithm to assign game server roles works in a dis-
tributed way that we cannot ensure global requirements such
as a minimum number of servers. For example, for redun-
dancy reasons, a minimum of two servers is advisable for
games in mobile ad-hoc networks. However, there may be
situations of high mobility where you want to keep more
than two servers all the times. On the other hand, a sin-
gle game server can also be useful if only one player node
has sufficient resources to host this game server as the al-
ternative is not to allow the game to be playable at all. In
situations with close proximity of all players and low mo-
bility, a single server may also provide a good and stable
service. Such global rules have to be checked and enforced
by the game application.

6. EVALUATION
We evaluated our algorithm with NS-2 in three different

scenarios for mobile gaming. We used a school yard sce-
nario during a 15 minute break, a train scenario with limited
transmission range and an artificial stress test scenario with
speeds of up to 10 m/s. In each scenario we used two set-
tings with a total number of 15 and 35 nodes with 10 player
nodes and 5 supporting nodes as well as 25 player nodes and
10 supporting nodes respectively. All nodes moved accord-
ing to the random waypoint model. As determined in [4],
we simulated game traffic with constant bitrate traffic pat-
tern with 64 byte packets at 20 pps. Additional background
traffic consists of 5 concurrent connections for simulations
with 15 nodes and 15 concurrent connections for simulations
with 35 nodes (64 byte packets, 10pps). All simulations used
the two ray ground radio propagation model and the AODV
routing protocol. We also generated random weights for the
player nodes ranging from 0 to 99. For each scenario we
used ten different weight settings and repeated each simula-
tion with ten different movement patterns. The start time
of the algorithm for each node is selected randomly during
the first five seconds of each simulation

The school yard scenario used a rectangular area of 400m×
400m for the smaller number of nodes and 800m × 800m
for the larger node number. Because people walk around on
the school yard, we employed a maximum speed of 2m/s.
The wireless communication range was set to 250m. For the
train scenario, we used areas of 240m×5m and 450 m×5m.
All nodes also moved at low speed between zero and 2m/s.
The radio range was restricted to 40 metres which covers
less than two coaches. The most significant difference for
the train scenario is that the nodes in an ad-hoc network
resemble pearls on a string. Node movement was further
restricted in the train scenario, so that 50 percent of player
nodes did not move at all.

Finally, the stress test was used to analyse our algorithm
in a more dynamic environment. In this scenario, all nodes
participate in the game and move randomly at speeds of up
to 10m/s.

In the first version of our algorithm, every node sends up-
dated status information to its neighbours every 0.5 seconds,
thus creating an overhead of 40 bytes per second and node.
As soon as the status table has information about weight
and degree of every host, it continues with the determina-
tion phase. Tables 3 and 4 show the results of the evaluation
of our initial implementation.

A good measure for the quality of the algorithm is the to-
tal number of servers. This can be determined by adding the



# of Servers Players
Scenario Nodes Avg StdDev /Server

School 15 3.47 0.90 2.88
Train 15 3.42 0.75 2.92
Stress 10 3.48 0.93 2.88
School 35 8.75 1.31 2.86
Train 35 8.20 1.69 3.05
Stress 25 7.45 1.22 3.36

Table 3: Nodes with a server role at the beginning

# of Servers Players
Scenario Nodes Avg StdDev /Server

School 15 3.49 0.90 2.78
Train 15 4.45 0.81 2.24
Stress 10 6.73 0.91 1.48
School 35 11.22 1.28 2.22
Train 35 11.81 1.30 2.11
Stress 25 12.00 1.99 2.08

Table 4: Total number of game servers

number of servers selected at the initial run of the algorithm
and the number of servers added during game due to mobil-
ity management. The right number of servers for a game de-
pends on the characteristics of the scenario, node movement
and the communication requirements of the game. How-
ever, to allow for data aggregation, game servers should
have at least two or more clients. Additionally, the pre-
viously mentioned redundancy requirement of two or more
servers should also be fulfilled. Therefore, we aim at a total
number of game servers between two and N/2 with N being
the number of player nodes in the game.

Table 3 only shows the number of servers after the initial
run of the algorithm and Table 4 shows the total number of
servers at the end of the game. As you can see, the ratio of
players to servers at the end of the game is between 1.48 and
2.78. The best result is achieved in the school yard while
the result for the stress test is quite bad. The results in the
train were predictable because of the special topology and
the small wireless range in this scenario.

During the game our algorithm determines new servers
only and does not switch off old servers that have no more
clients. One reason for that behaviour is that new clients for
this server could appear any time as nodes continue to move.
Also, the synchronisation time needed to setup a new server
should be taken into account when making the decision to
degrade a server to a player. This decision should there-
fore be taken by the game application and is not considered
during this evaluation.

As previously mentioned, node movement in the school
yard and train scenarios is rather low and should result in
no or only a few additional servers. However, as you can see
when comparing the larger scenarios in Tables 3 and 4, up
to three or more additional servers are determined during
the game. The main reason for this is packet loss. The
algorithm sends status updates every 0.5 seconds. If two
consecutive packets are lost, the node’s neighbours assume
that this node has become unreachable. Simulations without
any game or background traffic show only one additional

# of Servers Players
Scenario Nodes Avg StdDev /Server

School 15 2.40 0.60 4.17
Train 15 2.83 0.65 3.53
School 35 6.57 0.84 3.81
Train 35 6.45 1.48 3.88

Table 5: Nodes with a server role at the beginning

# of Servers Players
Scenario Nodes Avg StdDev /Server

School 15 2.67 0.59 3.77
Train 15 4.17 0.74 2.40
School 35 10.61 1.13 2.36
Train 35 10.39 1.28 2.19

Table 6: Total number of game servers

server in every three simulations. This first version of the
algorithm determines close to N/2 servers.

7. IMPROVEMENTS
In order to improve the algorithm, we made three changes.

The first version of the algorithm sends two status updates
per second. A different sending rate for status updates can
influence the results of the algorithm. Increasing the rate to
five updates per second showed worse results while decreas-
ing it to one status updates every two seconds produced a
slightly better result.

Furthermore, player nodes do not start at the same time.
When a game is already running, every new node can initiate
a new server determination in its area of the network. A
more efficient way of dealing with late arriving nodes is to let
these nodes directly start in the game phase without going
through the server determination algorithm. So a server is
immediately selected if one is available in the neighbourhood

The third improvement is delaying the transition from
discovery to determination phase. A node must send at least
three status packets before moving on to the next phase.
This delay improves the quality of the information about
the node’s neighbourhood. The more complete the view of
the neighbourhood, the better results can be achieved by the
server determination process. The downside of this change
is the increase of the algorithm’s run-time until the game
phase is reached. For the improved version of the algorithm,
the startup delay ranges between 3.3 and 3.5 seconds for all
school yard and train scenarios.

While the first two changes have only a negligible impact
on the quality of the algorithm, the improvements of the
third modification are significant. Tables 5 and 6 show the
results of the improved version of our algorithm with all
three changes for the school yard and train scenarios.

Further improvements could be achieved by using in-game
traffic to detect server failures. At a sending rate of 20 pps
between servers and players, we can more accurately decide



whether some packets were lost or if a node has become
unreachable.

8. CHEATING
Although the problem of cheating is not the focus of this

paper, it requires some serious thoughts. With the dis-
tributed algorithm proposed in this paper, any capable mo-
bile device has the possibility of being selected as a server. A
player can use this procedure to his advantage and increase
the weight of his own device in order to become a server
for the game. As a server, he is able to directly impair the
performance of players which are connected to his machine
by delaying, dropping or altering their packets. Depending
on the game logic, it may also be possible to effect other
players by taking part in distributed decisions at the server
level.

There are different solutions to this problem. When a
player detects that a server is being unfair, he can use ex-
isting in-game mechanisms to exclude this player from the
game or inform other players that this server is untrustwor-
thy. Such voting mechanisms are often present in today’s
multi-player games. In addition, a player can also initiate
a handoff procedure if another server is nearby and thus
remove the attacker’s ability to directly effect his game. Fi-
nally, a reputation mechanism could be established so that
only trustworthy players can be selected as servers.

Unlike in the Internet, players in mobile ad-hoc networks
are close together so that they can directly interact with
each other which makes a social solution to this problem
easier.

9. CONCLUSIONS & FUTURE WORK
In this paper we presented a distributed algorithm to de-

termine suitable servers from the group of players in a mobile
ad-hoc network. Our algorithm uses local information from
its neighbours to determine a nodes role as player or server
in the game. It ensures that the distance between player and
server stays below two hops where possible. A mobility man-
agement mechanism dynamically determines new servers as
the topology of the network changes.

We have shown through simulations that our algorithm
provides a workable solution to the problem. However, in
our simulations packet losses in the network resulted in an
unnecessary large number of game servers. The quality of
the results could be further improved by finding a good
tradeoff between phase transition times, the status update
sending rate and the total run-time of the algorithm. Prior-
ity queuing or other QoS mechanisms could also be employed
to deal with this problem.

Further improvements include matching the status table
with the neighbour list from lower layers, such as beacons in
IEEE 802.11 networks or information from the routing pro-
tocols. An analysis of the importance of the node’s available
resources and its position in the network for different sce-
narios could also be used to improve the algorithm.

10. ACKNOWLEDGEMENT
The authors would like to thank Edgar Liptay for his work

on the server determination algorithm which eventually lead
to this paper.

11. REFERENCES

[1] D. Budke, K. Farkas, O. Wellnitz, B. Plattner, and
L. Wolf. Real-Time Multiplayer Game Support Using
QoS Mechanisms in Mobile Ad Hoc Networks. In
Proceedings of the 3rd Annual Conference on Wireless
On demand Network Systems and Services (WONS
2006), Les Ménuires, France, Jan. 2006.

[2] E. Gutman, C. Perkins, J. Veizades, and M. Day. RFC
2608: SLPv2: A service location protocol, June 1999.

[3] S. Helal, N. Desai, V. Verma, and C. Lee. Konark – A
Service Discovery and Delivery Protocol for Ad-hoc
Networks. In Proceedings of the Third IEEE Conference
on Wireless Communication Networks (WCNC), New
Orleans, Mar. 2003.

[4] Johannes Faerber. Network Game Traffic Modelling. In
Proceedings of the 1st Workshop on Network and
System Support for Games, pages 53–57, Apr. 2002.

[5] F. Kuhn and R. Wattenhofer. Constant-time
distributed dominating set approximation. In
Proceedings of the 22nd ACM International Symposium
on the Principles of Distributed Computing, Boston,
Massachusetts, USA, July 2003.

[6] S. M. Riera, O. Wellnitz, and L. Wolf. A zone-based
gaming architecture for ad-hoc networks. In
Proceedings of the Workshop on Network and System
Support for Games (NetGames2003), Redwood City,
USA, May 2003.

[7] P. Sinha, R. Sivakumar, and V. Bharghavan. CEDAR:
a core-extraction distributed ad hoc routing algorithm.
In Proc. IEEE INFOCOM 1999, pages 202–209, Mar.
1999.

[8] J. Wu. Dominating-set-based routing in ad hoc wireless
networks. In Handbook of wireless networks and mobile
computing, pages 425–450, New York, NY, USA, 2002.
John Wiley & Sons, Inc.


