
Evaluating dead reckoning variations with a multi-player
game simulator

Wladimir Palant
University of Oslo

palant@ifi.uio.no

Carsten Griwodz
University of Oslo

griff@ifi.uio.no

Pål Halvorsen
University of Oslo

paalh@ifi.uio.no

ABSTRACT
One of the most di�cult tasks when creating an online multi-
player game is to provide the players with a consistent view
of the virtual world despite the network delays. Most cur-
rent games use prediction algorithms to achieve this, but
usually it does not go beyond applying the DIS [2] dead
reckoning algorithm proposed in the mid-90s. In this paper
we introduce a simulator called GLS that allows us to eval-
uate di�erent aspects of DIS and its variations. We examine
the impact of prediction and clock synchronization on game
consistency. We also evaluate the convergence algorithm we
introduce here. Furthermore we look into ways for com-
pensating increasing delays to keep the player's view of the
game state su�ciently consistent with other players.

1. INTRODUCTION
Multi-player online games become increasingly popular

nowadays. It is simply more challenging to compete against
other players than it is to compete against the arti�cial in-
telligence the game developers build into their games. One
major problem developers of online games have to face is
the network latency that makes fast user interactions di�-
cult. Especially �rst-person shooting games have high de-
mands on accuracy when displaying remote players. Shoot-
ing games require fast reactions from the players, and the
players require accurate position of their opponents without
noticeable delay from the game in return.
Early network games like Doom solved the problem easily

� they would send changes in game state (position updates)
at frame rate, at least 25 times per second. This way when-
ever a client had to redraw the screen it already received all
the necessary position updates. This was an incredible waste
of bandwidth, of course, something that was only possible
for a small number of players on a local area network.
The US Army chose a di�erent approach for its SIMNET

project in the mid-80s. It should allow large-scale training of
army units in a networked simulator. This e�ort was stan-
dardized as Distributed Interactive Simulation (DIS, [2]) in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

1993. Here a technique called dead reckoning was used to
limit the number of necessary position updates � the simu-
lator would predict the current position of a remote object
between position updates based on its velocity and acceler-
ation. The formula for the position at which DIS will show
a remote object is well-known (last term is optional):

p = p0 + v0∆t +
1

2
a0∆t2

Here p0, v0 and a0 are the position, velocity and acceleration
of the remote object received with the position update. ∆t
is the time that passed since the position update was sent
(di�erence between current time and the timestamp of the
position update). In a similar way the orientation of the
remote object can be calculated, with the same assumption
that it did not change its angular velocity/acceleration (or
at least not too much).
DIS does not require position updates to be sent too often.

It also deals with the fact that due to network lag a position
update is already outdated when it reaches its destination
� this is compensated by prediction. But DIS goes even
further and de�nes a way to decide when a position update
must be sent. Every player will predict his own position
based on the last position he sent. If this position deviates
too much (in terms of distance) from his real position he
should send a position update. The interval between two
subsequent position updates should not be longer than a
certain time interval however (typically a few seconds). This
restriction ensures that if one position update was lost on the
network another one will follow shortly, so that the impact
of the loss is limited.
Surprisingly, today the approach proposed by DIS is still

used in most multi-player online games with only small vari-
ations. Only a few other prediction algorithms have been
proposed, typically with a very limited area of application.
In this paper we evaluate DIS and its variations in the sce-
nario of a typical �rst-person shooting game. We present
di�erent evaluation criteria and show how the results di�er
from one to another. We furthermore introduce an exten-
sion to DIS that smoothes the displayed trajectory of the
players and makes it more realistic.

2. RELATED WORK
Delay and jitter on the network have an impact on the

user's experience of the game, they also in�uence the player's
performance. While this paper only intends to measure the
e�ects on computer players, there has been work on provid-
ing hard numbers for the impact on human players [3, 4, 5].

Figure 1: Simulator's graphical user interface

Furthermore [6] shows on the example of the online game
MiMaze, how the game experience can su�er if network la-
tency is not accounted for. And [7] demonstrates that this
is not an abstract problem. In shooting games players from
di�erent continents come together and compete with each
other, result being that pairwise network delays between
players can be very high.
While we chose convergence to repair prediction mistakes

(changing the state smoothly so that a correct state is re-
stored) other approaches are possible. One such approach is
Timewarp, removing the inconsistencies by restoring a pre-
vious game state [8]. Another technique, which we describe
later in the paper, is position-history based dead reckoning
(PHBDR, [9]).

3. SIMULATION SCENARIO
In order to run extensive tests on e�ects of network la-

tency we developed a system called GLS (Game Latency
Simulator, source code and the pre-compiled simulator are
available on the Internet [1]). For this we chose to emulate
an open source game called BZFlag [10]. This is a �rst-
person shooter game with a very simple goal � drive a tank
and shoot as many other tanks as possible. This made it
easy to create good computer players and to evaluate re-
sults.
The simulator emulates several players, all with their own

view of what happens in the game (the current results are
based on a two-players scenario). The players send posi-
tion updates to each other through the network. Network
topology is not simulated, it is simply assumed that every-
body receives a certain position update after some preset
network delay. Therefore it is irrelevant whether the game
uses a peer-to-peer approach or whether position updates go
through a central server � the important thing is only that
everybody concerned receives the update. For the results
presented here we used constant network delay, simulating
jitter and loss is also possible however. We assume that our
clients always send correct data, cheating is not considered

yet.
We created a GUI for the simulator (Figure 1) that allows

us to see the views of all players at the same time. It is useful
when we need to understand the numbers that we get from
our experiments. The simulator is mostly run in batch mode
however where we can speed up the processing at 1000 times
the real-time speed while still processing every frame for
every simulated client. The con�guration �le de�nes all the
necessary parameters, and each of those can be overridden
from the command line, for example the game �eld size,
maximum velocity, number of obstacles and the simulation
duration:

java batch.Main --field=Field(40,40)
--maxLinearVelocity=1.5
--obstacles=3
--event1=ShutdownEvent(180000)

To sum up the advantages of our simulator over using an
existing game:

• Simulations can be run much faster than at real-time
speed

• Using a simpli�ed world model where actions don't
have unexpected side e�ects

• Algorithms can be swapped easily, even from the com-
mand line

• Can be run in batch mode with all important parame-
ters speci�ed on command line or in con�guration �le

• Network is simulated as well so that its characteristics
can be adjusted easily

3.1 Physical model
The simulated world is modeled after BZFlag. Unlike

�ight simulators or racing games that have to simulate the
real world properly, most �rst-person shooting games use
a simpli�ed physical model. The world of BZFlag is two-
dimensional, the tanks cannot �y (they sometimes can jump
however which we left out in our simulator). Orientation,
movement direction and �ring direction are always identical.
Acceleration is meaningless, a player can change his linear
and angular velocity instantaneously. Both linear and an-
gular velocity are limited however (2 m/sec and π

2
sec−1 are

our default settings). Negative linear velocity is allowed, the
tanks can move backwards.
The physical model of popular games like Doom or Quake

deviates only in a few details from BZFlag, so results pro-
duced with our simulator can be applied to those games as
well. The instantaneous velocity changes have an e�ect on
the players' strategies, the good players have to be fast and
unpredictable. In these games it does not make sense to
move slower than at maximum speed (and in fact in Doom
and Quake you cannot) or not to change direction for more
than a few seconds. If you do you are likely to get shot.
That observation went into the design of computer players,
who reconsider their current strategy every two seconds. It
also imposes a limit on prediction quality.

3.2 Clock synchronization
One advantage of running the game in the simulator is

that all clients automatically have synchronized clocks �

there cannot be disagreements on the current time as all
clients are simulated on the same computer. We can always
tell whether some event on two di�erent clients happened
simultaneously. That is also the reason we can compare the
displayed position of a player with his real position � because
we know where this player is right now.
This is something we cannot simply assume in a real-

world scenario. Di�erent clients run on di�erent computers.
Clocks on di�erent computers usually di�er by at least sev-
eral seconds, so that the timestamp included in a position
update will only tell us the time interval between this posi-
tion update and the previous one from the same client. It
is possible to synchronize the clocks on two computers with
protocols like Network Time Protocol however, that is why
our simulator will still assume synchronized clocks.
If clock synchronization is not available, the timestamp

from the position update has to be ignored (it is meaning-
less). The best a game can do is to use the time when it
received the position update instead. This option is also
implemented in GLS and is used for one of the evaluations
presented.

3.3 Handling of remote players
Whenever a player needs the position of another player, a

prediction module will have to calculate current position of
the remote player based on received position updates. The
prediction module that we mainly use implements a modi�ed
version of the DIS dead reckoning algorithm. While it pre-
dicts the player's position as speci�ed in the DIS standard,
pre-reckoning [11] has also been implemented, meaning that
position updates should not only be sent when the player's
position deviates too much from his predicted position, but
also when its orientation deviates from the predicted orien-
tation by more than π

6
.

We also implemented a convergence algorithm to correct
the displayed position of remote players smoothly. When a
new position update is received the predicted position of a
player typically changes and does not match his displayed
position any more. DIS only has the option to jump to the
new position immediately (no convergence) or in a series of
smaller jumps ("smoothing"). Our goal on the other hand
was to produce something that would look like a genuine
movement. Whenever the remote player needs to be dis-
played we use his previous displayed position but adjust it
according to a linear and angular velocity that are calculated
as follows:

• Calculate the remote player's predicted position, the
target point

• Set α as the angle between the current displayed orien-
tation of the player and the direction from his current
displayed position to the target point

• If maxAngularV elocity allows us to reach the desired
orientation in this update step � set angular velocity
accordingly. Otherwise the angular velocity should be
sign(α) · maxAngularV elocity. That means that we
always turn with the maximal possible velocity, which
is usually the case in the real game as well.

• If the target point can be reached in this update step �
set linear velocity accordingly. Otherwise use cos(α) ·
maxLinearV elocity for linear velocity.

3.4 Handling of remote shots
In GLS, whenever information about a shot is received

the shooter will be displayed as �ring. The shot is originat-
ing at the displayed position of the shooter and propagating
linearly, with the prede�ned constant shot velocity (5 m/sec
by default). Now the displayed position of a remote player
is not necessarily correct, furthermore the target receives
information about the shot with a delay. This has as con-
sequence that the shooter and his target do not necessarily
agree on whether the target was hit.
Several approaches have been proposed to ensure that

there is always an agreement on the result of a shot. One
representative suggestion is targeting [12]. The idea is sim-
ple � the information on the shot arrives delayed, so the
target should compensate this by moving the �rst displayed
position of the shot forward accordingly, so that the shot's
position is the same in the view of both players. The dis-
advantage of this approach is that the target will not have
time to react, especially in a fast game dominated by close
combat. It also solves only one part of the problem as the
shooter might be aiming based on wrong information about
the target's location. We decided not to adopt targeting or
any similar approach, keeping player's view consistent (real-
istic) is more important to us than a consistent global game
state.

3.5 Evaluation methods
We used four di�erent evaluation criteria for the results

presented here:

• Average position deviation: this test simply compares
the displayed position of a player in the view of another
to his real location. This is done at frame rate (every
20 ms), the result is the average distance between the
real and the displayed position � an objective criterion
of the quality of displayed positions.

• Number of shots: this measures how many shots the
computer players �re per second. A low number of
shots indicates that the players have trouble catching
each other, for example if the convergence algorithm
is disabled and the opponent seemingly jumps from
one place to another all the time. Typically this is a
situation where real players get irritated and do not
have much fun playing the game.

• Number of misses: here we measure how often the
computer players miss their target. A high number
of misses indicates that errors in displayed positions of
remote players a�ect the "judgement" of the computer
players making them miss more often than usual.

• Agreed hits: for this test we do not rely on computer
player's aiming skills and make them �re constantly
instead (one shot every 400 ms). We count the per-
centage of hits where both parties (shooter and target)
agreed that the shot did in fact hit. This is a measure
of game state consistency, low percentage of agreed
hits indicates that di�erent players often disagree on
the game score.

4. EVALUATION RESULTS
In this section we present selected results from our large-

scale tests with the GLS simulator.

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600

A
vg

. p
os

iti
on

 d
ev

ia
tio

n
[m

]

Network delay [ms]

no prediction, no convergence
only prediction

only prediction (without clock synchronization)
convergence + prediction

only convergence

Figure 2: Position deviation for di�erent scenarios

4.1 Prediction and convergence
We examined the e�ect that prediction and convergence

have in a fast-action �rst-person shooting game. As the
player can change his direction quickly it is to be expected
that prediction will not be very accurate (see section 3.1).
With growing network delay the inaccuracy of the predic-
tion will grow because we will have to predict over a larger
time interval. This is best measured as average position de-
viation, see Figure 2 (every dot represents the average for
20 minutes of simulation, standard deviation isn't shown to
keep it readable). We can see that while prediction gives
us more accurate positions for low delays this advantage be-
comes smaller with higher network latency.
This �gure also shows that the convergence algorithm

comes with a price � you get less accurate absolute posi-
tions, of course, if you move smoothly to your new predicted
position instead of jumping there. This price is highest for
low delays, for higher delays we notice an advantage of con-
vergence � it does not allow wrong predictions to in�uence
the positioning of the player too much. If the prediction
produces a position several meters away from the current
displayed position of the player, it will take several seconds
for the convergence algorithm to get there, and by that time
a more accurate position update will probably arrive already.
We can see that in our testing scenario the results with and
without convergence become the same for 1500 ms one-way
network delay.
There is also another way of dealing with bad predictions.

We can drop time synchronization (see section 3.2) and ig-
nore the timestamp of the position updates. Instead we
use the timestamp at which the position update was re-
ceived and predict the player's position starting from this
time point. That means that we knowingly show player po-
sitions that are outdated. These positions are reasonably
accurate however as we only need to predict for the time
interval between two position updates. As can be seen in
Figure 2 this also eliminates the rapid growth of position
errors towards higher network delays.
It does not make sense to drop prediction and use only

convergence instead. As Figure 2 shows, converging only
between known positions of remote players produces clearly
worse results than the combination of prediction and con-
vergence algorithm.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 50 100 150 200

S
ho

ts
 p

er
 s

ec
on

d

Network delay [ms]

no prediction, no convergence
only prediction

convergence + prediction

Figure 3: Shot numbers for di�erent scenarios

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600 700 800 900 1000

C
on

ta
ct

 r
ad

iu
s

[m
]

Network delay [ms]

70% agreed hits
60% agreed hits
50% agreed hits
40% agreed hits

Figure 4: Contact radius required for constant num-

ber of agreed hits

Now one could get the impression that using prediction
without convergence still gives you the best results for up to
900 ms network lag and therefore should be used unless the
network delay really exceeds this number (which will usually
be not the case). Figure 3 however shows another aspect of
having no convergence algorithm � the opponent seemingly
jumps every time a new position update is received, making
it di�cult to aim and shoot at him (in this �gure and all
the following every dot represents the average of 20 simu-
lations with 10 minutes simulated time each). This results
in a much lower number of shots (see section 3.5) compared
to the scenario where convergence is used or neither conver-
gence nor prediction are used and the tank simply stands
still until the next position update is received.

4.2 Adjusting contact radius
Usually when �rst-person shooting games check whether

a shot was a hit or not, they ignore the complex geometry
of the player as he is displayed on screen. Instead they de-
�ne the player's "center" and every shot that came within
a certain distance ("contact radius") of this "center" counts
as a hit. The contact radius might be changed for vari-
ous purposes, for example in some games computer players

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

M
is

se
s/

sh
ot

s

Contact radius [m]

Figure 5: Relation between number of misses and

contact radius

have a bigger contact radius then human players, thus giving
human players an advantage (Doom is an example). Here
we wanted to examine whether it is possible to adjust the
contact radius to limit the e�ects of network lag on game
consistency and user experience.
For the following evaluations both prediction and conver-

gence were enabled. Our measurements of agreed hits (see
section 3.5) con�rmed that we get a higher number of dis-
agreements on whether a shot hit his target or not when we
increase the network delay. So we measured the percentage
of agreed hits for di�erent contact radiuses to decide how we
have to choose the player's contact radius depending on the
network delay to keep the percentage of agreed hits constant
(see Figure 4).
Surprisingly it shows up that there is a linear relation be-

tween the network delay and the contact radius required.
The �gure seems to imply that for our data sample the de-
pendency between contact radius and the number of agreed
hits is also linear � 10% increase in agreed hits correspond
to roughly 0.4 m increase in contact radius. This is not the
case, of course, as it would mean 100% agreed hits for 3
m contact radius (the real number from our experiments is
89%).
Now we look at the results from the user's (in our case:

computer player's) point of view. Interestingly enough, the
percentage of shots that missed their target hardly changes
with increasing network delay. It seems that the computer
player's ability to aim is nearly una�ected by the network
delay when the convergence algorithm is used. Also, as ex-
pected the number of misses decreases with increasing con-
tact radius, this relation is shown in Figure 5.

4.3 Dependence of prediction algorithms on
physical model: PHBDR

We also tried to run tests with our implementation of
the PHBDR [9] algorithm. We found out however that this
algorithms does not work with a simple physical model that
does not consider acceleration.
PHBDR only uses the player's previous known positions

to predict his current position. It takes either the two or
three last position updates and calculates a �rst/second or-
der curve though these points � the supposed movement tra-

jectory of the player. While �rst order curves are relatively
unproblematic, the second order curve de�nes an accelera-
tion that the player must have to hit all three positions at
the correct time. In our simulator this acceleration term was
often extremely high and, as the result, the prediction based
on it absolutely unrealistic.

5. CONCLUSION
Our experiment results show that prediction the way it

is de�ned by DIS is still the best way to achieve accurate
positions. However, this approach degrades with higher net-
work delays which can be prevented either by using our con-
vergence algorithm or by dropping clock synchronization.
We furthermore show that while our convergence algorithm
comes with a cost in terms of position deviation (which
becomes less important towards higher network delays) it
prevents much user irritation through sudden "jumps" of
remote players. Overall it seems that the advantages of pro-
viding a reasonably smooth transition when repairing game
state outweighs the disadvantages, even though the conver-
gence algorithm we present here still can be improved. A
convergence algorithm should especially always be used for
games where the precise position is not so important like
strategy and role-playing games.
We could also show that increasing the contact radius of

the players with increasing lag can be used to keep the con-
sistency level in a game on a constant level. The dependency
between the contact radius and the network delay has been
shown to be linear in our simulator and it is reasonable to
assume that it is also linear in other shooting games. This
means that it is enough to adjust the contact radius without
changing the player's displayed size. Other �nding was that
the network delay has almost no in�uence on the player's
aiming capabilities when our convergence algorithm is in ef-
fect.
On the negative side we had to state that PHBDR can-

not be applied to our physical model. This algorithm was
originally meant for �ight simulator and assumes a physi-
cal model where velocity changes go with an acceleration �
which is not true for most �rst-person shooting games.

6. FUTURE WORK
We intend to continue testing di�erent scenarios and ap-

proaches with GLS. One particular area of interest are posi-
tion updates containing the relative position to the receiver
of the update. Players usually make their decisions based on
relative positions and not on the absolute ones, so using rel-
ative positions in the prediction algorithm should improve
the game experience e.g. by allowing more precise aiming.
Also predicted relative positions for players interacting with
each other should be more reliable than predictions for ab-
solute positions.
Another interesting research area are the dependencies

between prediction quality and the physical model with its
parameters. We already did a basic evaluation of the e�ects
a reduced angular velocity limit would have and this work
should continue.
We also intend to run tests with more complicated net-

work models that include not only delay but also jitter and
losses. A measurement of required network bandwidth de-
pending on the prediction and convergence algorithm used
is also necessary.

Furthermore we need to extend our convergence algorithm
to deal with obstacles. The tank should probably drive
around an obstacle or if this would take too long (mean-
ing that the current displayed position of the player is very
far o�) it could jump to a position on the other side of the
obstacle.
It should be interesting to do some evaluation for scenar-

ios with more than two players. While our simulator allows
us to do so we only run a few very basic tests so far. And,
of course, we should con�rm the relevant results with hu-
man players. Unfortunately these are far less e�ective than
computer players which is inconvenient for large-scale tests.
Something that we might want to look into is cheating

prevention. The best algorithms are not worth much if they
allow players to cheat easily, thus disturbing the game ex-
perience for everybody.

7. REFERENCES
[1] GLS � Game Latency Simulator.

http://www.ifi.uio.no/forskning/grupper/nd/
projects/2004/mismoss/gls.html

[2] IEEE Standard for Distributed Interactive Simulation
� Application Protocols. IEEE Std 1278.1-1995

[3] Tristan Henderson. The e�ects of relative delay in
networked games. PhD thesis, University of London,
London. April 2003.

[4] Lothar Pantel, Lars Wolf. On the Impact of Delay on
Real-Time Multiplayer Games. Proceedings of the 12th
International Workshop on Network and Operating
Systems Support for Digital Audio and Video, Miami
Beach. May 12-14, 2002.

[5] Mark Claypool, Kajal Claypool, Feissal Dama. The
E�ects of Frame Rate and Resolution on Users
Playing First Person Shooter Games. Proceedings of
the 13th Annual Multimedia Computing and
Networking, San Jose. January 18-19, 2006.

[6] Laurent Gautier, Christophe Diot. Design and
Evaluation of MiMaze, a Multi-Player Game on the
Internet. IEEE Multimedia Systems Conference,
Austin. June 28 - July 1, 1998.

[7] Wu-chang Feng, Francis Chang, Wu-chi Feng,
Jonathan Walpole. A Tra�c Characterization of
Popular On-line Games. IEEE/ACM Transactions on
Networking, vol. 13, no. 3, June 2005.

[8] Martin Mauve. How to Keep a Dead Man from
Shooting. Proceedings of the 7th International
Workshop on Interactive Distributed Multimedia
Systems and Telecommunication Services, Enschede.
October 17-20, 2000.

[9] Sandeep K. Singhal, David R. Cheriton. Using a
Position History-Based Protocol for Distributed
Object Visualization. Technical Report
STAN-CS-TR-94-1505, Department of Computer
Science, Stanford University. February 1994.

[10] BZFlag � a free multiplayer multiplatform 3D tank
battle game. http://bzflag.org/

[11] Thomas P. Duncan, Denis Gra£anin. Pre-Reckoning
Algorithm for Distributed Virtual Environments.
Proceedings of the 35th conference on Winter
simulation, New Orleans. December 07-10, 2003.

[12] Chris Haag. Targeting, a variation of dead reckoning.
http://www.gamedev.net/reference/articles/

article1370.asp

