

Optimizing Overlay Topology by Reducing Cut Vertices

Xiaomei Liu1, Li Xiao1, Andrew Kreling1, Yunhao Liu2
1Department of Computer Science and Engineering, Michigan State University

2Deptartment of Computer Science, Hong Kong University of Science and Technology
{ liuxiaom, lxiao, krelinga}@cse.msu.edu, liu@cs.ust.hk

 Abstract – Overlay networks provide base infrastructures for
many areas including multimedia streaming and content
distributions. Since most overlay networks are highly
decentralized and self-organized, cut vertices may exist in
such systems due to the lack of centralized management. A cut
vertex is defined as a network node whose removal increases
the number of network components. Failure of these nodes
can break an overlay into a large number of disconnected
components and greatly downgrade the upper layer services
like media streaming. We propose here a distributed
mechanism, CAM, which efficiently detects the cut vertices
before they fail and neutralizes them into normal overlay
nodes with slight overhead so that the possibility of network
decomposition is minimized after they fail. We prove the
correctness of this algorithm and evaluate the performance of
our design through trace driven simulations.

1 Introduction
Features such as high flexibility and easy deployment enable
overlay networks to provide support to a large variety of Internet
applications, including multimedia streaming, online gaming, and
publish/subscribe systems. Due to the lack of widespread IP
multicast, multimedia streaming relies on the overlay
infrastructure to implement the quick audio/video data distribution
using overlay multicast [1-4]. In order to improve scalability and
relieve the burden on servers, P2P overlay architectures are
introduced in the media streaming (P2P streaming), the online
gaming (P2P online gaming), and publish/subscribe services [5-
9]. In these systems, end hosts self-organize into an overlay
structure and the services are deployed along the overlay.

In order to provide qualified services, many applications
require overlays to guarantee reliability and avoid network
failures. For instance, the outgoing streaming may be disrupted
when network failures occur [5]. In comparison with general
nodes, the failure of “critical” nodes such as central servers is
more likely to lead to network failures. Most overlay networks are
highly decentralized. They remove the potential “critical” nodes
caused by the service requirement since resources and services are
provided by each node in the system. This, however, cannot
remove “critical” nodes induced by the network topology.
Overlay nodes are highly self-organized. They make connections
either with some randomly selected nodes or via locally defined
algorithms. In both cases, there is no centralized control to
manage the network topology and thus the presence of topological
“critical” nodes is unavoidable. S. Saroiu et al. [10] show that the
failure of small amounts of high-degree nodes can efficiently
“shatter” the overlay network, which makes the network highly
vulnerable in the face of well-constructed, targeted attacks. In this
paper, we discuss the influence of another type of “critical” nodes,

cut vertices, in overlay networks.
Consider a network as an undirected graph. Cut vertices are

such nodes whose deletion will create new components in the
original graph. For a connected graph (component), removing cut
vertices partitions the graph. In this paper, “graph”, “component”,
and “vertex” are concepts defined in graph theory: a “graph” is
used to represent a network; a “component” is a connected graph;
and a “vertex” is another name for a node. Vertex and node will
be used interchangeably in the remainder of this paper.

Traditional methods of detecting cut vertices require the
global information of the network topology. These approaches
work well if the network topology is not changed frequently and
the scale of the network is from small to medium. This is not the
case in most of the overlay networks. The end systems that
compose an overlay network come and go very frequently [5, 10,
11]. This leads to high resilience of the overlay. Furthermore, the
scale of an overlay network is expected to be huge, from several
thousands to millions of nodes [2, 12]. A third factor is that most
overlay networks lack the centralized control to maintain the
global topology information due to their fully distributed feature.

In this paper, we propose CAM (Connection Adjacency
Matrix): a fully distributed mechanism to detect cut vertices.
Based on the CAM algorithm, each node in the system
periodically sends out probe messages and decides whether it is a
cut vertex based on the received feedback. CAM is composed of
three stages: cut vertex detection, cut vertex computation, and cut
vertex neutralization. At detection stage, a cut vertex candidate
sends out component detection messages for each of its
connections. If any two detection messages of different
connections meet with each other, an arrival message is sent back
to the message issuer. At computation stage, the candidate
constructs a CAM graph in which nodes represent the connections
of the candidate. If it receives an arrival message of two
connections, the candidate will add an edge to the corresponding
nodes in the CAM graph. The candidate decides whether it is a cut
vertex based on its CAM graph. At the neutralization stage, CAM
normalizes the detected cut vertex to a non-cut vertex.

The rest of the paper is organized as follows. In the next
section, we review the related work. Section 3 describes the CAM
algorithm. This is followed by the proof of the correctness of the
algorithm in Section 4. Section 5 discusses the simulation
methodology and the performance of CAM. We conclude the
work in Section 6.

2 Related Work
Cut vertex is an important concept that has been introduced in
graph theory and studied extensively. Existing algorithms to
detect cut vertices in graph theory need to collect overall topology
information of the network and construct a depth first search

(DFS) tree including all the network nodes. One category of such
algorithms detects cut vertices by checking the sub-tree of each
node in the DFS tree [13]. These algorithms are composed of the
following operations. First, construct a DFS tree from any node.
Then, for each node v in the DFS tree except the root, check the
neighbors that v’s descendents connect with. If none of the
neighbors of v’s descendents are v’s ancestors, v is a cut vertex.
The root is a cut vertex if and only if it has more than one
neighbor.

Another approach is to group the graph nodes into several bi-
connected components [13]. A bi-connected component is a
component that cannot be disconnected by deleting any vertex
within the component. For any two vertices in a bi-connected
component, there exist at least two disjointed paths between them.
It is obvious that all the edge vertices that connect any two bi-
connected components are cut vertices. In this approach,
distinguishing disjointed paths and forming the bi-connected
components require the traversal over the whole network. For
instance, Sharir’s algorithm for finding the bi-connected
component builds a DFS tree involving all nodes in the graph
[14].

Node failures caused by network resilience are widely noticed
by the research community. Most recently proposed algorithms
for overlay networks have addressed the problems [5, 15-19].
However, these algorithms treat all nodes the same way and do
not pay special attention to “critical” nodes, whose failure may
create more serious problems in the network than what these
algorithms are able to handle.

High degree nodes can also be “critical” with respect to
network topology. P. Keyani et al. [20] proposed a mechanism to
modify the P2P overlay topology and reduce the number of high
degree nodes. Their method focuses on how to reduce but not
detect high degree nodes and is invoked when an attack occurs.
The long convergence time of this method may make it
impractical in a large-scale overlay network.

3 CAM: Distributed Cut Vertex Discovery
Consider an overlay network as a graph. The basic idea of CAM
is to check whether this graph is still connected after a node is
removed. If the graph is partitioned, the node is a cut vertex;
otherwise, it is not a cut vertex. Recall that CAM is composed of
three stages: cut vertex detection, cut vertex computation, and cut
vertex neutralization. We present details of each stage in the rest
of this section.

3.1 Cut vertex detection
A node in the system cannot be a cut vertex if it has zero or one
connection. Otherwise, the node considers itself as a cut vertex
candidate and initializes a cut vertex detection process. Before the

detection, the candidate assigns a unique numerical identifier,
starting with 1, to each of its connections/edges (we use the terms
“connection” and “edge” interchangeably in the rest of this
paper). This identifier is called the connection number of the
connection. For example, if a candidate has n connections, it will
label them from 1 to n.

At the beginning of the detection, the candidate sends a
component probe message to each of its neighbors. The message
contains the candidate’s IP address, a timestamp, a TTL threshold,
and the connection number of the edge that connects this neighbor
with the candidate. Each node in the system has a connection list.
There is one entry for each candidate in the connection list with
the format of <candidate IP address, timestamp, connection
number 1, connection number 2, …>. The node deals with the
received message based on the information stored in the
connection list. Upon receiving a message, one of the following
situations may arise:
• The node has already received the message, or the message is

old. The node simply just drops the message.
• There is no entry for the candidate that issues this message.

The node creates an entry for it.
• The timestamp in the received message is newer than the one

stored in the corresponding connection list entry. The
candidate replaces the old time stamp and connection
numbers stored in the connection list with the new ones.

• The timestamp of a recently received message is the same as
the one stored in the corresponding connection list entry but
the connection number of the message is not the same. The
node adds the new connection number to the corresponding
entry and sends an arrival message back to the candidate.
Each arrival message contains two or more connection
numbers and a timestamp. A node does not send any arrival
messages until it receives probe messages from at least two
different connection numbers.
A node forwards the message to all its neighbors except the

message sender if the following conditions are met: this is a
“new” message with the latest timestamp; the node did not issue
any arrival message for the cut vertex candidate who issued this
message; and the message’s TTL has not expired.
Here we illustrate cut vertex detection shown in Figure 1. The
candidate is a cut vertex. The initial CAM TTL value equals 3.
Nodes reduce the TTL value by 1 each time right before they
forward the probe messages to their neighbors. The connections to
the candidate are labeled 1,2,3, and 4, respectively. In Figure 1(b),
the candidate sends a probe message for each connection to nodes
B, D, E, and G. Note that the TTL value has already been reduced
by one by the candidate before it sends the probe messages to its
neighbors. In Figure 1(c), nodes B, D, E, and G forward the
received probe messages to other neighbors.

Figure 1 Cut vertex detection in CAM

Figure 2 CAM and CAM graph

At this point, nodes C and F received probe messages from
two distinct connection numbers. In Figure 1(d), node C sends
back to the candidate an arrival message with connection numbers
1 and 2. Node F sends back to the candidate an arrival message
with connection numbers 3 and 4.

3.2 Cut vertex computation
Each candidate maintains an arrival list and a |c|-by-|c| binary
matrix, where |c| is the number of connections the candidate had
when the CAM algorithm started. The format of the arrival list is
similar to the connection list: <IP address, timestamp, connection
number 1, connection number 2, …>. The IP address here is the
IP address of the node that sends the arrival message back to the
candidate. The binary matrix is called the candidate’s connection
adjacency matrix or CAM, whose row/column numbers represent
the connection numbers of the candidate’s connections.

If an arrival message including connection number x is
received by the candidate from a network node v, the candidate
will add x to the corresponding entry of v in the arrival list. For an
entry (x, y) in CAM, where x is the row number and y is the
column number, if the corresponding connection number of x and
y can be found in the same entry of the arrival list, the value of
this CAM entry is set to 1. Otherwise, the value is set to 0. In
other words, if any node has sent back to the candidate an arrival
message containing connection numbers x and y, a 1 is placed in
the (x, y) and (y, x) entry of the candidate’s CAM. After waiting
an expected time out period, the candidate interprets its CAM as
an adjacency matrix representation of an undirected graph, whose
vertices are corresponding to the candidate’s connections. This
graph is called the candidate’s CAM graph. An edge exists
between node x and node y in the CAM graph if and only if the
value of the CAM entry (x, y) is 1. If the candidate’s CAM graph
has more than 1 component, the candidate is a cut vertex. The
CAM and the CAM graph of the candidate nodes in the previous
example are shown in Figure 2.

3.3 Cut vertex neutralization
The process by which a cut vertex normalizes itself to a non-cut
vertex is called cut vertex neutralization. Cut vertex neutralization
is relatively trivial after cut vertices are detected: all that needs to
be done in this process is to merge the disconnected components
of a node’s CAM graph into one connected component. Due to
the page limitation of this paper, we illustrate the neutralization
process by a simple neutralization mechanism. More sophisticated
neutralization mechanisms can be constructed based on this basic
one.

Consider a detected cut vertex v that has n CAM graph
components C1, C2, C3, … Cn. At the beginning of neutralization,
v randomly chooses one node from each component. Assume v
selects p1, p2, p3, … pn from C1, C2, C3, … Cn. Based on the arrival
list, v chooses overlay network nodes o1, o2, o3, … on, which have
sent to v arrival messages of connections p1, p2, p3, … pn

respectively. Then v sends a connection message to o1, o2, o3, …
on to indicate how the nodes should connect to each other, e.g., o1
connects to o2; o2 connects to o3; and so on. After constructing the
new connections, the candidate is normalized to a non-cut vertex.

The network topologies of the aforementioned examples after cut
vertex neutralization are shown in Figure 3.

3.4 Traffic overhead analysis
CAM improves the network reliability in two types of cost: the
network traffic cost at the detection and the neutralization stages,
and the computing cost at the cut vertex computation stage.
Compared to the network traffic cost, the cost of the local
computation based on a two-dimensional matrix is trivial for
today’s powerful end systems. Therefore, we focus on the traffic
cost of CAM. Given an overlay network with n nodes, let c be the
average number of connections a node can have, and let t be the
TTL threshold in the CAM algorithm. If we ignore the difference
of logical link cost, the traffic cost of CAM can be evaluated as
follows.

 At the cut vertex detection stage, a node will not forward any
component probe message after it sends an arrival message back
to the candidate. This means each node only forwards one
component probe message for one specific connection during a
CAM operation for one cut vertex candidate. We also know that,
in CAM, component probe messages are not forwarded back to its
(message) incoming neighbors. Therefore, if we name the set of
nodes traversed by messages of the same connection number as
the traversal area of that connection, the traversal area of
different connections will not overlap. This suggests that the
detection traffic cost of one candidate cannot be greater than nc/2.
As the traversal area of each connection is also limited by t, the
detection traffic cost should be min(O(nct), O(n2c/2)).

Together with the fact that each node sends one arrival
message in the worst case and every node in the system considers
itself as a cut vertex candidate, the total traffic cost of the
detection stage should be min(O(nct+n), O(n2c/2+n)). At the
neutralization stage, since each candidate at most sends out c
neutralization messages, the traffic cost is O(nc). The total traffic
cost of CAM is min(O(n(ct+c+1)), O(n(nc+2c+2)/2). As c (in the
order of ten) is generally much smaller than n (in the order of tens
of thousands or millions), the total traffic cost of CAM can be
simplified as min(O(nct), O(n2)).

We need to adopt a small TTL value to reduce the cost of
probing. In Section 5.2 , we will see that probe messages with a
TTL value of two can achieve an accuracy rate of about 80% in a
P2P system. In addition, as the average number of connections of
most traces is from 3 to 4, ct is trivial compared with n. Therefore,
the traffic cost that all nodes execute CAM once in a P2P system
is O(n).

Figure 3 Cut vertex neutralization

4 Proof of Correctness
In this section, we present the proof of correctness for the CAM
algorithm, starting with the definition of the system model and
followed by the proofs.

4.1 System model and definitions
Consider a connected undirected graph: G = (V, E) to represent an
overlay network, where V is the set of overlay nodes and E is the
set of the edges of the overlay network. Assume that the network
topology is static and the network has unlimited resources. Thus,
each node can issue the probe message with the TTL value set to
infinity. In practice, we trade the accuracy for the traffic cost and
set the TTL to a small value.

Definition 4.1: Given a graph G (V, E), a cut vertex candidate vc
refers to a vertex that tries to decide whether it is a cut vertex. The
number of edges/connections that vc has is referred to as |c|.

Definition 4.2: Given a graph G (V, E), a vertex vp, and one of its
connections ec = (vp, vq), assuming connection number of ec is c.
vq is the neighbor of vp that is connected by ec. Let us remove vp
together with all its edges from G and get a new graph G' (V - vp,
E - {(vp, vi) | vi ∈ V, (vp, vi) ∈ E}). The reachable set of ec, RS(ec),
is the set of vertices that can be reached in G' by a breadth first
search (BFS) initiated by vq. This search process is denoted as
BFS(ec). In other words, RS(ec) contains the set of all vertices that
can be reached by vq via connection ec. It is also important to note
that there exists a vertex vq ∈ RS(ec) such that (vp, vq) ∈ E.

4.2 Proofs
Lemma 1: If there is an edge that connects two vertices in the
candidate’s CAM graph that represent connections ea and eb of
graph G, then RS(ea) = RS(eb).
Proof: The fact that there is an edge between the vertices
representing connections ea and eb in the candidate’s CAM graph
implies that the values of entry (a, b) and (b, a) must be 1 in the
CAM. This implies that there must exist some node vp in the
network that has received component probe messages for
connections ea and eb. Since vp received component probe
messages for connections ea and eb, it is obvious that node vp is
traversed by both BFS(ea) and BFS(eb). According to the
operation of BFS algorithm, after traversing node vp, BFS(ea) can
reach all the nodes that BFS(eb) can reach and vice versa.
Therefore, RS(ea) = RS(eb).

Lemma 2: If the vertices that represent connections ea and eb are
in the same component of the candidate’s CAM graph, RS(ea) =
RS(eb).
Proof: This is trivial given Lemma 1.

Lemma 3: If the vertices that represent connections ea and eb are
not in the same component of the candidate’s CAM graph, RS(ea)
≠ RS(eb).
Proof: We prove this by contradiction. Assume that the vertices
that represent connections ea and eb are not in the same
component of the candidate’s CAM graph, but RS(ea) = RS(eb).
Then there must exist at least one node that has not been reached
by probe messages containing connection numbers a and b but
can be reached by both BFS(ea) and BFS(eb). According to the
operation of BFS, this only happens when the TTL has expired
before the probe message arrives at the specific node. This
contradicts the earlier assumption that the TTL values of probe
messages are infinite. Therefore, the lemma is true.

Lemma 4: If RS(ea) = RS(eb) for any 1 ≤ a, b ≤ |c| of a cut vertex
candidate vc, then vc is not a cut vertex.
Proof: RS(ea) = RS(eb) suggests that any node vi ∈ RS (ea) must
∈ RS(eb). RS(ea) = RS(eb) for all 1 ≤ a, b ≤ |c| suggests this
happens in any two reachable sets of vc. In addition, for any nodes
vi and vj ∈ RS(ea), there exists a path from vi to vj that does not
include vc. Therefore, removing vc from G leaves one connected
component. By definition, vc is not a cut vertex.

Lemma 5: If RS(ea) ≠ RS(eb) for any 1 ≤ a, b ≤ |c|, then vc is a
cut vertex.
Proof: Let G’ be the graph that is formed by removing vc and all
its edges in G. RS(ea) ≠ RS(eb) implies that there does not exist an
edge (vi, vj) ∈ G' where vi ∈ RS(ea) and vj ∈ RS(eb). This implies
that RS(ea) and RS(eb) are separate components of G'. By the
definition of RS, the removal of vc from G results in the number
of components of G increasing by at least 1. Therefore, vc is a cut
vertex.

Theorem 1: If the candidate’s CAM graph has more than one
component, it is a cut vertex.
Proof: The candidate’s CAM graph has more than one
component. According to Lemma 3, we know that the RSs
associated with the connection numbers whose vertex
representations belong to different components in the CAM graph
are not equal. Due to Lemma 5, we can easily conclude vc is a cut
vertex.

Theorem 2: If the candidate’s CAM graph has one component, it
is not a cut vertex.
Proof: From Lemma 2, we can deduce that RS(ea) = RS(eb) for
any 1 ≤ a, b ≤ |c| when the candidate’s CAM graph has one
component. From Lemma 4, we can conclude vc is not a cut
vertex.

5 Performance Evaluation
We deployed a series of trace-driven simulations to evaluate

the performance of CAM. Note that cut vertices exist in most
overlay networks. We evaluate CAM based on P2P systems for
two reasons. First, P2P systems are very popular today. Many
applications including multimedia streaming and online gaming
may be either based on P2P system or adopt a P2P based
architecture. P2P traffic overwhelms web traffic on the Internet
and has become the major consumer of Internet Bandwidth [21].
Second, the P2P system is a representative of the overlay
networks: it is composed of self-governed end systems; it is
autonomous and open; there is no central control server in a P2P

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

Trace number

C
ut

 v
er

te
x

ra
tio

 (%
)

Figure 4 Cut vertex ratio of the traces

system; nodes can join and leave the system at any time; and
collecting and maintaining overall topology information in a P2P
system is hard, if not impossible.

5.1 Simulation setup
We used the DSS Clip2 traces that were collected from Dec. 7th
2000 to June 15th 2001 in our simulation. DSS Clip2 traces were
available on http://dss.clip2.com, but are not available now. We
can provide the traces to those who are interested upon request.
There are 48 traces in this collection. The network sizes of the
traces range from 225 to 47245. The average connections per
node (node degree) of the traces are from less than 1 to 5. The cut
vertex ratio for each trace ranges from about 1% of trace 7 to 17%
of trace 17 as shown in Figure 4. It is obvious that the cut vertex
ratio of traces collected after March 19th 2001 are more stable
compared to previous ones, when the largest change in P2P
software happened.

We have evaluated in the simulation the accuracy of CAM
and its influence in the overlay topology. We checked the cut
vertices in each trace using both traditional DFS based algorithm
and CAM algorithm to check the accuracy of CAM. We then
gradually removed the cut vertices and measured the overlay
topology at the same time to check the influence of CAM in the
overlay topology.

5.2 Accuracy of CAM detection
Three metrics are introduced for evaluating the accuracy of CAM:
CAM accuracy rate (CAR), CAM false positive rate (CFPR), and
CAM false negative rate (CFNR). CAR shows how many vertices
detected by CAM as cut vertices are cut vertices. CFPR and
CFNR show the error types made by CAM. CFPR shows how
many nodes that are not cut vertices but are identified as cut
vertices. CFNR shows how many nodes that are cut vertices are
not detected as cut vertices. Assume that V is the set of all the
vertices in a network, C is the set of all the cut vertices, and K is
the set of all the vertices that are identified by CAM as cut
vertices. The definitions of aforementioned metrics are given as
follows:

 CAR =
K

CK I
 (1)

 CFPR = ()
CV

KCV

−
− I (2)

 CFNR = ()
C

KVC −I (3)

We have checked the accuracy of all 48 traces and shown the
average values of these three parameters in Figure 5. From these
results, we can observe that the accuracy rate is over 70% even
when the TTL value of CAM is 1. The accuracy rate is almost
100% when the CAM TTL value is set to 4. With the increase of
the CAM TTL value, the CFPR keeps reducing and drops to
almost zero when the TTL equals 4. At the same time, the CFNR
remains as zero in all cases. This suggests that CAM can always
successfully identify all the cut vertices, and CAM errors mainly
result from the false alarms CAM reports when it considers non-
cut vertices as cut vertices if the TTL is not large enough.

5.3 Influence on the overlay topology
We present here how CAM can affect the network topology. The
metrics used for evaluating the influence of CAM in the overlay
topology include the number of components and ratio of new cut
vertices. The ratio of the new cut vertices refer to the cut vertices
induced by the failure of nodes in the system. Due to the page
limitation, we only representatively present the simulation results
of trace 30, which has a relative large network size of 41,589, a
typical average node degree of 3, and was collected after March
19th, 2001.

We compare the number of components in Figure 6. It shows
that CAM greatly decreases the number of components induced
by cut vertex failure. The ex-cut vertices here refer to the cut
vertices in the overlay before cut vertex failures occur. The largest
reduction is observed when CAM TTL equals 1. The reduction is
rather close when CAM TTL is 2, 3 or 4. From Figure 5, we know
CAM achieves the lowest CAR when TTL is set to 1. In fact,
almost all nodes would be reported as cut vertices by CAM when
TTL is set to 1, and thus after executing neutralization, the entire
overlay topology would become a mesh. With the results shown
in Figure 5 and aimed at reducing the detection cost, we
recommend to set CAM TTL as 2 or 3.

Figure 7 shows how many new cut vertices might be
produced when cut vertex failures occur. Note that CAM
normalizes all the cut vertices to normal overlay nodes, and thus
all the cut vertices in the network after CAM are the “new” cut
vertices. When the TTL value is increased from 1 to 3, the
generation rate of “new” cut vertices is also increased. However,
the generation rates of TTL of 3 and TTL of 4 are very close. We
also noticed that CAM with a TTL larger than 1 induces more

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

Ex-cut vertices removed (%)

C
o
m

po
ne

n
ts

 (X
10

3)

No CAM

TTL1

TTL2
TTL3

TTL4

Figure 5 Accuracy rate of CAM Figure 6 Component number increases after cut vertex
failures

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Ex-cut vertices being removed (%)

N
e
w

 c
ut

 v
e
rti

ce
s

in
 th

e
 n

et
w

o
rk

 (%
)

No CAM

TTL1

TTL2
TTL3

TTL4

Figure 7 New cut vertices after ex-cut vertex failures

new cut vertices than in an overlay without deploying CAM. One
possible reason is that the nodes connected with the new
connections made by CAM, which prevent networks from
partitioning, became new cut vertices.

6 Conclusion
In this paper, we have investigated the cut vertex failure problem
and proposed a fully distributed mechanism, CAM, to detect cut
vertices in overlay topology and improve the overlay reliability.
As many applications, such as media streaming, rely on overlay
networks, improving reliability can provide better service
qualities of these applications. CAM can be applied to each node
locally in an overlay networks. To our knowledge, we are the first
to introduce a fully distributed cut vertex detection algorithm for
nodes to detect whether they are cut vertex locally.

We prove the correctness of the algorithm and also evaluate
its accuracy and influence in the overlay topology by trace-driven
simulations. CAM can always successfully identify all the cut
vertices. The detection traffic overhead can be restricted by
setting a small CAM TTL value, which may mistake a small
number of non-cut vertices as cut vertices. Our simulation shows
that with a TTL threshold value as small as 2, CAM can obtain a
fairly good accuracy rate of 80%. The accuracy rate increases to
96% when the TTL equals 3, and 99% when TTL equals 4. After
being detected, the cut vertices can be normalized to non-cut
vertices. We propose a basic neutralization mechanism to
normalize cut vertices to non-cut vertices in this paper. In the
future, we will propose optimized mechanism to neutralize cut
vertices. We also plan to demonstrate the effectiveness of CAM in
other overlay network systems.

7 Acknowledgement
This work was supported in part by the US National Science

Foundation under grants CCF-0325760, CCF-0514078, CNS-
0549006, and CNS 0551464.

8 Reference
[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy,

"Scalable Application Layer Multicast," in the proceeding
of ACM SIGCOMM, 2002.

[2] Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K.
Sripanidkulchai, J. Zhan, and H. Zhang, "Early Experience
with an Internet Broadcast System Based on Overlay
Multicast," in the proceeding of USENIX Annual Technical
Conference, 2004.

[3] Y. Chu, S. G. Rao, and H. Zhang, "A Case for End System
Multicast," in the proceeding of ACM SIGMETRICS, 2000.

[4] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller, "Construction of an Efficient Overlay Multicast
Infrastructure for Real-time Applications," in the
proceeding of INFOCOM, 2003.

[5] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, "Resilient
Peer-to-Peer Streaming," in the proceeding of ICNP, 2003.

[6] A. S. John and B. N. Levine, "Supporting P2P Gaming
When Players Have Heterogeneous Resources," in the
proceeding of NOSSDAV, 2005.

[7] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, "On
Peer-to-Peer Media Streaming," in the proceeding of
ICDCS, 2002.

[8] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, "AnySee:
Scalable Live Streaming Service Based on Inter-Overlay
Optimization," in the proceeding of INFOCOM, 2006.

[9] Y. Choi and D. Park, "Mirinae: A Peer-to-Peer Overlay
Network for Large-Scale Content-based Publish/Subscribe
Systems," in the proceeding of NOSSDAV, 2005.

[10] S. Saroiu, P. Gummadi, and S. Gribble, "A Measurement
Study of Peer-to-Peer File Sharing Systems," in the
proceeding of Mutimedia Computing and Networking
(MMCN), 2002.

[11] S.Sen and J. Wang, "Analyzing Peer-to-peer Traffic Across
Large Networks," in the proceeding of ACM SIGCOMM
Internet Measurement Workshop, 2002.

[12] "Limeware", www.limeware.org,
[13] F. Buckley and M. Lewinter, "A Friendly Introduction to

Graph Theory": Prentice Hall, 2002.
[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

"Introduction to Algorithms": McGraw-Hill & MIT Press,
2001.

[15] S. Yuen and B. Li, "Strategy Proof Mechanisms for
Dynamic Multicast Tree Formation in Overlay Networks,"
in the proceeding of INFOCOM, 2005.

[16] C. Abad, W. Yurcik, and R. H. Campbell, "A Survey and
Comparison of End-System Overlay Multicast Solutions
Suitable for Network-Centric Warfare," in the proceeding of
SPIE Defense and Security Symposium/BattleSpace
Digitalization and Network-Centric Systems IV, 2004.

[17] X. Liu, Y. Liu, and L. Xiao, "Reliable Response Delivery in
Peer-to-Peer Systems," in the proceeding of MASCOTS,
2004.

[18] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang, "Location-
Aware Topology Matching in Unstructured P2P Systems,"
in the proceeding of INFOCOM'04, 2004.

[19] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, "A Distributed
Approach to Solving Overlay Mismatching Problem," in the
proceeding of ICDCS, 2004.

[20] P. Keyani, B. Larson, and M. Senthil, "Peer Pressure:
Distributed Recovery from Attacks in Peer-to-Peer
Systems," in the proceeding of IFIP Workshop on Peer-to-
Peer Computing, 2002.

[21] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy,
"An Analysis of Internet Content Delivery Systems," in the
proceeding of OSDI, 2002.

